Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Analytical solutions to the optimization of a quadratic cost function subject to linear and quadratic equality constraints

Analytical solutions to the optimization of a quadratic cost function subject to linear and... In the area of broad-band antenna array signal processing, the global minimum of a quadratic equality constrained quadratic cost minimization problem is often required. The problem posed is usually characterized by a large optimization space (around 50–90 tuples), a large number of linear equality constraints, and a few quadratic equality constraints each having very low rank quadratic constraint matrices. Two main difficulties arise in this class of problem. Firstly, the feasibility region is nonconvex and multiple local minima abound. This makes conventional numerical search techniques unattractive as they are unable to locate the global optimum consistently (unless a finite search area is specified). Secondly, the large optimization space makes the use of decision-method algorithms for the theory of the reals unattractive. This is because these algorithms involve the solution of the roots of univariate polynomials of order to the square of the optimization space. In this paper we present a new algorithm which exploits the structure of the constraints to reduce the optimization space to a more manageable size. The new algorithm relies on linear-algebra concepts, basic optimization theory, and a multivariate polynomial root-solving tool often used by decision-method algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Analytical solutions to the optimization of a quadratic cost function subject to linear and quadratic equality constraints

Loading next page...
 
/lp/springer-journals/analytical-solutions-to-the-optimization-of-a-quadratic-cost-function-uYXO9xfgVf
Publisher
Springer Journals
Copyright
Copyright © 1996 by Springer-Verlag New York Inc.
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
DOI
10.1007/BF01182622
Publisher site
See Article on Publisher Site

Abstract

In the area of broad-band antenna array signal processing, the global minimum of a quadratic equality constrained quadratic cost minimization problem is often required. The problem posed is usually characterized by a large optimization space (around 50–90 tuples), a large number of linear equality constraints, and a few quadratic equality constraints each having very low rank quadratic constraint matrices. Two main difficulties arise in this class of problem. Firstly, the feasibility region is nonconvex and multiple local minima abound. This makes conventional numerical search techniques unattractive as they are unable to locate the global optimum consistently (unless a finite search area is specified). Secondly, the large optimization space makes the use of decision-method algorithms for the theory of the reals unattractive. This is because these algorithms involve the solution of the roots of univariate polynomials of order to the square of the optimization space. In this paper we present a new algorithm which exploits the structure of the constraints to reduce the optimization space to a more manageable size. The new algorithm relies on linear-algebra concepts, basic optimization theory, and a multivariate polynomial root-solving tool often used by decision-method algorithms.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Feb 2, 2005

References