Access the full text.
Sign up today, get DeepDyve free for 14 days.
In the area of broad-band antenna array signal processing, the global minimum of a quadratic equality constrained quadratic cost minimization problem is often required. The problem posed is usually characterized by a large optimization space (around 50–90 tuples), a large number of linear equality constraints, and a few quadratic equality constraints each having very low rank quadratic constraint matrices. Two main difficulties arise in this class of problem. Firstly, the feasibility region is nonconvex and multiple local minima abound. This makes conventional numerical search techniques unattractive as they are unable to locate the global optimum consistently (unless a finite search area is specified). Secondly, the large optimization space makes the use of decision-method algorithms for the theory of the reals unattractive. This is because these algorithms involve the solution of the roots of univariate polynomials of order to the square of the optimization space. In this paper we present a new algorithm which exploits the structure of the constraints to reduce the optimization space to a more manageable size. The new algorithm relies on linear-algebra concepts, basic optimization theory, and a multivariate polynomial root-solving tool often used by decision-method algorithms.
Applied Mathematics and Optimization – Springer Journals
Published: Feb 2, 2005
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.