Access the full text.
Sign up today, get DeepDyve free for 14 days.
The SF5 group has great potential in influencing the drug-like features of organic molecules due to its chemical stability, hydrophobic surface, electron-withdrawing capability and unique octahedral geometry. However, the difficulty in synthesising SF5-containing compounds, particularly in aromatic systems, has impeded the widespread incorporation of this group into desired scaffolds in medicinal chemistry. The most troublesome step operationally involves the synthesis of the intermediate species ArSF4Cl from aryl-disulfides. Here, we report an analytical-scale synthesis of ArSF4Cl using flow microfluidic technology, allowing for safer handling of reagents and avoiding the need for gloveboxes or Cl2 cylinders. The system is fairly straightforward to prepare, clean to assemble and can be adapted easily to further developments. As well as making progress towards continuous de novo syntheses of ArSF5 compounds, this result broadly highlights the potential of flow chemistry in providing new avenues to perform challenging batch reactions.Graphical abstrac[graphic not available: see fulltext]
Journal of Flow Chemistry – Springer Journals
Published: Jan 7, 2021
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.