Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Analysis of hypoxia in human glioblastoma tumors with dynamic 18F-FMISO PET imaging

Analysis of hypoxia in human glioblastoma tumors with dynamic 18F-FMISO PET imaging Gliomas are the most common type of primary brain tumors and are classified as grade IV. Necrosis and hypoxia are essential diagnostic features which result in poor prognosis of gliomas. The aim of this study was to report quantitative temporal analyses aiming at determining the hypoxic regions in glioblastoma multiforme and to suggest an optimal time for the clinical single scan of hypoxia. Nine subjects were imaged with PET and 18F-FMISO in dynamic mode for 15 min followed with static scans at 2, 3 and 4 h post-injection. Spectral analysis, tumor-to-blood ratio (TBR) and tumor-to-normal tissue ratio (TNR) were used to delimit perfused and hypoxic tumor regions. TBR and TNR images were further scaled by thresholding at 1.2, 1.4, 2 and 2.5 levels. The images showed a varying tumor volume with time. TBR produced broader images of the tumor than TNR considering the same thresholds on intensity. Spectral analysis reliably determined hypoxia with different degrees of perfusion. By comparing TBR and TNR with spectral analysis images, weak to moderate correlation coefficients were found for most thresholding values and imaging times (range: 0 to 0.69). Hypoxic volume (HV) estimated from the net uptake rate (K i ) were changing among imaging times. The minimum HV changes were found between 3 h and 4 h, confirming that after 3 h, there was a very low exchange of 81F-FMISO between blood and tumor. On the other hand, hypoxia started to dominate the perfused tissue at 90 min, suggesting this time is suitable for a single scan acquisition irrespective of tumor status being highly hypoxic or perfused. At this time, TBR and TNR were respectively found in the nine subjects as 1.72 ± 0.22 and 1.74 ± 0.19. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Australasian Physical & Engineering Sciences in Medicine Springer Journals

Analysis of hypoxia in human glioblastoma tumors with dynamic 18F-FMISO PET imaging

Loading next page...
 
/lp/springer-journals/analysis-of-hypoxia-in-human-glioblastoma-tumors-with-dynamic-18f-H2hK5nqfdR

References (38)

Publisher
Springer Journals
Copyright
Copyright © 2019 by Australasian College of Physical Scientists and Engineers in Medicine
Subject
Biomedicine; Biomedicine, general; Biological and Medical Physics, Biophysics; Medical and Radiation Physics; Biomedical Engineering and Bioengineering
ISSN
0158-9938
eISSN
1879-5447
DOI
10.1007/s13246-019-00797-8
Publisher site
See Article on Publisher Site

Abstract

Gliomas are the most common type of primary brain tumors and are classified as grade IV. Necrosis and hypoxia are essential diagnostic features which result in poor prognosis of gliomas. The aim of this study was to report quantitative temporal analyses aiming at determining the hypoxic regions in glioblastoma multiforme and to suggest an optimal time for the clinical single scan of hypoxia. Nine subjects were imaged with PET and 18F-FMISO in dynamic mode for 15 min followed with static scans at 2, 3 and 4 h post-injection. Spectral analysis, tumor-to-blood ratio (TBR) and tumor-to-normal tissue ratio (TNR) were used to delimit perfused and hypoxic tumor regions. TBR and TNR images were further scaled by thresholding at 1.2, 1.4, 2 and 2.5 levels. The images showed a varying tumor volume with time. TBR produced broader images of the tumor than TNR considering the same thresholds on intensity. Spectral analysis reliably determined hypoxia with different degrees of perfusion. By comparing TBR and TNR with spectral analysis images, weak to moderate correlation coefficients were found for most thresholding values and imaging times (range: 0 to 0.69). Hypoxic volume (HV) estimated from the net uptake rate (K i ) were changing among imaging times. The minimum HV changes were found between 3 h and 4 h, confirming that after 3 h, there was a very low exchange of 81F-FMISO between blood and tumor. On the other hand, hypoxia started to dominate the perfused tissue at 90 min, suggesting this time is suitable for a single scan acquisition irrespective of tumor status being highly hypoxic or perfused. At this time, TBR and TNR were respectively found in the nine subjects as 1.72 ± 0.22 and 1.74 ± 0.19.

Journal

Australasian Physical & Engineering Sciences in MedicineSpringer Journals

Published: Sep 13, 2019

There are no references for this article.