Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

An extracellular glucoamylase produced by endophytic fungus EF6

An extracellular glucoamylase produced by endophytic fungus EF6 A strain of endophytic fungus EF6 isolated from Thai medicinal plants was found to produce higher levels of extracellular glucoamylase. This strain produced glucoamylase of culture filtrate when grown on 1% soluble starch. The enzyme was purified and characterized. Purification steps involved (NH4)2SO4 precipitation, anion exchange, and gel filtration chromatography. Final purification fold was 14.49 and the yield obtained was 9.15%. The enzyme is monomeric with a molecular mass of 62.2 kDa as estimated by SDS-PAGE, and with a molecular mass of 62.031 kDa estimated by MALDI-TOF spectrometry. The temperature for maximum activity was 60°C. After 30 min for incubation, glucoamylase was found to be stable lower than 50°C. The activity decrease rapidly when residual activity was retained about 45% at 55°C. The pH optimum of the enzyme activity was 6.0, and it was stable over a pH range of 4.0–7.0 at 50°C. The activity of glucoamylase was stimulated by Ca2+, Co2+, Mg2+, Mn2+, glycerol, DMSO, DTT and EDTA, and strongly inhibited by Hg2+. Various types of starch were test, soluble starch proved to be the best substrate for digestion process. The enzyme catalyzes the hydrolysis of soluble starch and maltose as the substrate, the enzyme had K m values of 2.63, and 1.88 mg/ml and V max, values of 1.25, and 2.54 U/min/mg protein, and V max/K m values of 0.48 and 1.35, respectively. The internal amino acid sequences of endophytic fungus EF6 glucoamylase; RALAN HKQVV DSFRS have similarity to the sequence of the glucoamylase purified form Thermomyces lanuginosus. From all results indicated that this enzyme is a glucoamylase (1,4-α-D-glucan glucanohydrolase). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Biochemistry and Microbiology Springer Journals

An extracellular glucoamylase produced by endophytic fungus EF6

Loading next page...
 
/lp/springer-journals/an-extracellular-glucoamylase-produced-by-endophytic-fungus-ef6-hABWnmKyjE

References (36)

Publisher
Springer Journals
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Biochemistry, general; Medical Microbiology ; Microbiology
ISSN
0003-6838
eISSN
1608-3024
DOI
10.1134/S000368381104017X
Publisher site
See Article on Publisher Site

Abstract

A strain of endophytic fungus EF6 isolated from Thai medicinal plants was found to produce higher levels of extracellular glucoamylase. This strain produced glucoamylase of culture filtrate when grown on 1% soluble starch. The enzyme was purified and characterized. Purification steps involved (NH4)2SO4 precipitation, anion exchange, and gel filtration chromatography. Final purification fold was 14.49 and the yield obtained was 9.15%. The enzyme is monomeric with a molecular mass of 62.2 kDa as estimated by SDS-PAGE, and with a molecular mass of 62.031 kDa estimated by MALDI-TOF spectrometry. The temperature for maximum activity was 60°C. After 30 min for incubation, glucoamylase was found to be stable lower than 50°C. The activity decrease rapidly when residual activity was retained about 45% at 55°C. The pH optimum of the enzyme activity was 6.0, and it was stable over a pH range of 4.0–7.0 at 50°C. The activity of glucoamylase was stimulated by Ca2+, Co2+, Mg2+, Mn2+, glycerol, DMSO, DTT and EDTA, and strongly inhibited by Hg2+. Various types of starch were test, soluble starch proved to be the best substrate for digestion process. The enzyme catalyzes the hydrolysis of soluble starch and maltose as the substrate, the enzyme had K m values of 2.63, and 1.88 mg/ml and V max, values of 1.25, and 2.54 U/min/mg protein, and V max/K m values of 0.48 and 1.35, respectively. The internal amino acid sequences of endophytic fungus EF6 glucoamylase; RALAN HKQVV DSFRS have similarity to the sequence of the glucoamylase purified form Thermomyces lanuginosus. From all results indicated that this enzyme is a glucoamylase (1,4-α-D-glucan glucanohydrolase).

Journal

Applied Biochemistry and MicrobiologySpringer Journals

Published: Jul 5, 2011

There are no references for this article.