# An Extension of Montel’s Three Omitted Values Theorem

An Extension of Montel’s Three Omitted Values Theorem Montel’s fundamental normality test (published in 1912) provides a strong sufficient condition for normality: a family F\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathscr {F}$$\end{document} of functions meromorphic in a region Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varOmega$$\end{document} is normal there if there exist three distinct values a, b, c in the extended complex plane C∞\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {C}}_\infty$$\end{document} such that each f in F\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathscr {F}$$\end{document} omits in Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varOmega$$\end{document} each of these values. In 1954 Montel published an extension of this which gives a necessary and sufficient condition for F\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathscr {F}$$\end{document} to be a normal family, and which contains his Fundamental Normality Test as a special case. This striking result does not seem to be well known and, unfortunately, there is a small error in the proof. Montel’s new condition for normality is the uniform separation of the pre-images f-1(aj)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f^{-1}(a_j)$$\end{document}, or fibers, of four distinct points a1,a2,a3,a4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$a_1,a_2,a_3,a_4$$\end{document} in C∞\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {C}}_\infty$$\end{document}. We point out the error in the proof, and establish an improved version of his result. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Methods and Function Theory Springer Journals

# An Extension of Montel’s Three Omitted Values Theorem

, Volume 21 (1) – Mar 1, 2021
12 pages

/lp/springer-journals/an-extension-of-montel-s-three-omitted-values-theorem-r8Wn7zUz22
Publisher
Springer Journals
Copyright © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
ISSN
1617-9447
eISSN
2195-3724
DOI
10.1007/s40315-021-00363-y
Publisher site
See Article on Publisher Site

### Abstract

Montel’s fundamental normality test (published in 1912) provides a strong sufficient condition for normality: a family F\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathscr {F}$$\end{document} of functions meromorphic in a region Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varOmega$$\end{document} is normal there if there exist three distinct values a, b, c in the extended complex plane C∞\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {C}}_\infty$$\end{document} such that each f in F\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathscr {F}$$\end{document} omits in Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varOmega$$\end{document} each of these values. In 1954 Montel published an extension of this which gives a necessary and sufficient condition for F\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathscr {F}$$\end{document} to be a normal family, and which contains his Fundamental Normality Test as a special case. This striking result does not seem to be well known and, unfortunately, there is a small error in the proof. Montel’s new condition for normality is the uniform separation of the pre-images f-1(aj)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$f^{-1}(a_j)$$\end{document}, or fibers, of four distinct points a1,a2,a3,a4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$a_1,a_2,a_3,a_4$$\end{document} in C∞\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {C}}_\infty$$\end{document}. We point out the error in the proof, and establish an improved version of his result.

### Journal

Computational Methods and Function TheorySpringer Journals

Published: Mar 1, 2021