Access the full text.
Sign up today, get DeepDyve free for 14 days.
Currently, it is critical to find the correct features from the audio, in order to analyze the information contained in it. This paper analyzes several feature types in audio from different points of view: time series, sound engineering, etc. In particular, the description of audio as a set of time series is not very common in the literature, and it is one of the aspects studied in this paper. Particularly, this paper proposes an automated method for feature engineering in audios, to extract, analyze and select the best features in a given context. Specifically, this paper develops a hybrid scheme of extraction of audio descriptors based on different principles and defines an automatic approach for the analysis and selection of these descriptors in a given audio context. Finally, our approach was tested on grouping tasks and compared to previous works on audio classification problems, with encouraging results.
International Journal of Multimedia Information Retrieval – Springer Journals
Published: Jan 7, 2021
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.