Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Alginate biosynthesis by Azotobacter bacteria

Alginate biosynthesis by Azotobacter bacteria The ability of representatives of various species of the bacterial genus Azotobacter (A. chroococcum 7B, A. chroococcum 12B, A. chroococcum 12BS, A. agile 12, A. indicum 8, A. vinelandii 17, and A. vinelandii 5B) to alginate synthesis has been studied. It has been shown that all tested bacterial strains have this ability to different extents. Capsular alginate comprises from 2.6 to 32% of the total amount of synthesized alginate in various bacterial species. Strains that are able to active synthesis of alginate have been selected; the effect of the medium composition on their biosynthesis has been studied. The optimal conditions for alginate synthesis by the A. chroococcum 12BS producer strain include the presence of mannitol (40 g/L), yeast extract (1%), and low concentration of phosphates (KH2PO4—0.008 g/L, K2HPO4—0.032 g/L) in the medium; alginate production under these conditions is 4.5 g/L. The effect of aeration on polymer biosynthesis has been revealed: an increase in aeration causes an increase in alginate synthesis, while its decrease promotes the synthesis of poly-3-hydroxybutirate. It has been shown by IR spectroscopy that alginates obtained under various conditions of cultivation contain different ratios of residues of mannuronic and guluronic acids (M/G from 70/30 to 80/20) in the polymer chain and also differ in the amount of acetyl groups (from 10 to 25%) in the polyme structure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Biochemistry and Microbiology Springer Journals

Loading next page...
 
/lp/springer-journals/alginate-biosynthesis-by-azotobacter-bacteria-0MCwluNRlo

References (0)

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Inc.
Subject
Life Sciences; Biochemistry, general; Microbiology; Medical Microbiology
ISSN
0003-6838
eISSN
1608-3024
DOI
10.1134/S0003683817010070
Publisher site
See Article on Publisher Site

Abstract

The ability of representatives of various species of the bacterial genus Azotobacter (A. chroococcum 7B, A. chroococcum 12B, A. chroococcum 12BS, A. agile 12, A. indicum 8, A. vinelandii 17, and A. vinelandii 5B) to alginate synthesis has been studied. It has been shown that all tested bacterial strains have this ability to different extents. Capsular alginate comprises from 2.6 to 32% of the total amount of synthesized alginate in various bacterial species. Strains that are able to active synthesis of alginate have been selected; the effect of the medium composition on their biosynthesis has been studied. The optimal conditions for alginate synthesis by the A. chroococcum 12BS producer strain include the presence of mannitol (40 g/L), yeast extract (1%), and low concentration of phosphates (KH2PO4—0.008 g/L, K2HPO4—0.032 g/L) in the medium; alginate production under these conditions is 4.5 g/L. The effect of aeration on polymer biosynthesis has been revealed: an increase in aeration causes an increase in alginate synthesis, while its decrease promotes the synthesis of poly-3-hydroxybutirate. It has been shown by IR spectroscopy that alginates obtained under various conditions of cultivation contain different ratios of residues of mannuronic and guluronic acids (M/G from 70/30 to 80/20) in the polymer chain and also differ in the amount of acetyl groups (from 10 to 25%) in the polyme structure.

Journal

Applied Biochemistry and MicrobiologySpringer Journals

Published: Feb 21, 2017

There are no references for this article.