Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Agroforestry and grass buffer effects on water quality in grazed pastures

Agroforestry and grass buffer effects on water quality in grazed pastures Conservation practices including agroforestry and grass buffers are believed to reduce nonpoint source pollution (NPSP) from pastured watersheds. Agroforestry, a land management practice that intersperses agricultural crops with trees, has recently received increased attention in the temperate zone due to its environmental and economic benefits. However, studies are limited that have examined buffer effects on the quality of water from grazed pastures. Six treatment areas, two with agroforestry buffers, two with grass buffers, and two control treatments were used to test the hypothesis that agroforestry and grass buffers can be used to effectively reduce NPSP from pastured watersheds. Vegetation in grass buffer and pasture areas includes red clover ( Trifolium pretense L.) and lespedeza ( Kummerowia stipulacea Maxim.) planted into fescue ( Festuca arundinacea Schreb.). Eastern cottonwood trees ( Populus deltoides Bortr. ex Marsh.) were planted into fescue in agroforestry buffers. Soils at the site are mostly Menfro silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalfs). Treatments were instrumented with two-foot H flumes, water samplers, and flow measuring devices in 2001. Composite water samples were analyzed for sediment and total nitrogen after each runoff event to compare treatment differences. Treatments with agroforestry and grass buffers had significantly lower runoff volumes as compared to the control. The loss of sediment and total nitrogen were smaller for the buffered treatments. The results of this study suggest that establishment of agroforestry and grass buffers help reduce NPSP pollution from pastured watersheds. It is anticipated as trees grow and roots occupy more soil volume, the reduction in N in runoff will increase on the agroforestry watershed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agroforestry Systems Springer Journals

Agroforestry and grass buffer effects on water quality in grazed pastures

Loading next page...
 
/lp/springer-journals/agroforestry-and-grass-buffer-effects-on-water-quality-in-grazed-2exojjuWKD

References (28)

Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Agriculture; Forestry
ISSN
0167-4366
eISSN
1572-9680
DOI
10.1007/s10457-010-9288-9
Publisher site
See Article on Publisher Site

Abstract

Conservation practices including agroforestry and grass buffers are believed to reduce nonpoint source pollution (NPSP) from pastured watersheds. Agroforestry, a land management practice that intersperses agricultural crops with trees, has recently received increased attention in the temperate zone due to its environmental and economic benefits. However, studies are limited that have examined buffer effects on the quality of water from grazed pastures. Six treatment areas, two with agroforestry buffers, two with grass buffers, and two control treatments were used to test the hypothesis that agroforestry and grass buffers can be used to effectively reduce NPSP from pastured watersheds. Vegetation in grass buffer and pasture areas includes red clover ( Trifolium pretense L.) and lespedeza ( Kummerowia stipulacea Maxim.) planted into fescue ( Festuca arundinacea Schreb.). Eastern cottonwood trees ( Populus deltoides Bortr. ex Marsh.) were planted into fescue in agroforestry buffers. Soils at the site are mostly Menfro silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalfs). Treatments were instrumented with two-foot H flumes, water samplers, and flow measuring devices in 2001. Composite water samples were analyzed for sediment and total nitrogen after each runoff event to compare treatment differences. Treatments with agroforestry and grass buffers had significantly lower runoff volumes as compared to the control. The loss of sediment and total nitrogen were smaller for the buffered treatments. The results of this study suggest that establishment of agroforestry and grass buffers help reduce NPSP pollution from pastured watersheds. It is anticipated as trees grow and roots occupy more soil volume, the reduction in N in runoff will increase on the agroforestry watershed.

Journal

Agroforestry SystemsSpringer Journals

Published: May 1, 2010

There are no references for this article.