Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Adenosine-5′-phosphosulfate kinase from Thermobifida fusca

Adenosine-5′-phosphosulfate kinase from Thermobifida fusca Sulfur, as a macronutrient, is essential for all kinds of organisms. Sulfate, the primary available source of sulfur, is firstly activated by adenylation catalyzed by ATP sulfurylase (ATPS) to form adenosine 5′-phosphosulfate (APS), which will be further phosphorylated into 3′-phosphoadenosine 5′-phosphosulfate (PAPS) by APS kinase (APSK). In some organisms, sulfate activating related enzymes are assembled to form sulfate-activating complex (SAC) to facilitate APS synthesis, the thermodynamically unfavorable reaction. In genome of a moderate thermophilic bacterium, Thermobifida fusca, there are presumably GTPasecoupled ATPS and one putative bifunctional ATPS/APSK type SAC. In this study, this putative SAC of T. fusca was prokaryotically expressed, purified and characterized. Activity assays showed that it contained APSK activity, while lacked ATPS activity. SAC of T. fusca was further used as a coupling enzyme to assay APS formation catalyzed by yeast ATPS. Based on the sequence alignment and modeled structure, we infer that the divergences of two conserved motifs and the missing of a loop and a helix-turn-helix motifs may contribute to the deficiency of ATPS activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Biochemistry and Microbiology Springer Journals

Adenosine-5′-phosphosulfate kinase from Thermobifida fusca

Applied Biochemistry and Microbiology , Volume 50 (6) – Oct 24, 2014

Loading next page...
 
/lp/springer-journals/adenosine-5-phosphosulfate-kinase-from-thermobifida-fusca-QxoP0ux8EH

References (0)

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Springer Journals
Copyright
Copyright © 2014 by Pleiades Publishing, Inc.
Subject
Life Sciences; Biochemistry, general; Microbiology; Medical Microbiology
ISSN
0003-6838
eISSN
1608-3024
DOI
10.1134/S000368381406009X
Publisher site
See Article on Publisher Site

Abstract

Sulfur, as a macronutrient, is essential for all kinds of organisms. Sulfate, the primary available source of sulfur, is firstly activated by adenylation catalyzed by ATP sulfurylase (ATPS) to form adenosine 5′-phosphosulfate (APS), which will be further phosphorylated into 3′-phosphoadenosine 5′-phosphosulfate (PAPS) by APS kinase (APSK). In some organisms, sulfate activating related enzymes are assembled to form sulfate-activating complex (SAC) to facilitate APS synthesis, the thermodynamically unfavorable reaction. In genome of a moderate thermophilic bacterium, Thermobifida fusca, there are presumably GTPasecoupled ATPS and one putative bifunctional ATPS/APSK type SAC. In this study, this putative SAC of T. fusca was prokaryotically expressed, purified and characterized. Activity assays showed that it contained APSK activity, while lacked ATPS activity. SAC of T. fusca was further used as a coupling enzyme to assay APS formation catalyzed by yeast ATPS. Based on the sequence alignment and modeled structure, we infer that the divergences of two conserved motifs and the missing of a loop and a helix-turn-helix motifs may contribute to the deficiency of ATPS activity.

Journal

Applied Biochemistry and MicrobiologySpringer Journals

Published: Oct 24, 2014

There are no references for this article.