Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Adaptive Smoothing as Inference Strategy

Adaptive Smoothing as Inference Strategy Although spatial smoothing of fMRI data can serve multiple purposes, increasing the sensitivity of activation detection is probably its greatest benefit. However, this increased detection power comes with a loss of specificity when non-adaptive smoothing (i.e. the standard in most software packages) is used. Simulation studies and analysis of experimental data was performed using the R packages neuRosim and fmri. In these studies, we systematically investigated the effect of spatial smoothing on the power and number of false positives in two particular cases that are often encountered in fMRI research: (1) Single condition activation detection for regions that differ in size, and (2) multiple condition activation detection for neighbouring regions. Our results demonstrate that adaptive smoothing is superior in both cases because less false positives are introduced by the spatial smoothing process compared to standard Gaussian smoothing or FDR inference of unsmoothed data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroinformatics Springer Journals

Adaptive Smoothing as Inference Strategy

Loading next page...
 
/lp/springer-journals/adaptive-smoothing-as-inference-strategy-srguQyZ9ET
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Biomedicine; Neurosciences; Bioinformatics; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Neurology
ISSN
1539-2791
eISSN
1559-0089
DOI
10.1007/s12021-013-9196-z
pmid
23828255
Publisher site
See Article on Publisher Site

Abstract

Although spatial smoothing of fMRI data can serve multiple purposes, increasing the sensitivity of activation detection is probably its greatest benefit. However, this increased detection power comes with a loss of specificity when non-adaptive smoothing (i.e. the standard in most software packages) is used. Simulation studies and analysis of experimental data was performed using the R packages neuRosim and fmri. In these studies, we systematically investigated the effect of spatial smoothing on the power and number of false positives in two particular cases that are often encountered in fMRI research: (1) Single condition activation detection for regions that differ in size, and (2) multiple condition activation detection for neighbouring regions. Our results demonstrate that adaptive smoothing is superior in both cases because less false positives are introduced by the spatial smoothing process compared to standard Gaussian smoothing or FDR inference of unsmoothed data.

Journal

NeuroinformaticsSpringer Journals

Published: Jul 5, 2013

References