Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this paper, an adaptive artefact canceller is designed using the bounded range artificial bee colony (BR-ABC) optimization technique. The results of proposed method are compared with recursive least square and other evolutionary algorithms. The performance of these algorithms is evaluated in terms of signal-to-noise ratio (SNR), mean square error (MSE), maximum error (ME) mean, standard deviation (SD) and correlation factor (r). The noise attenuation capability is tested on EMG signal contaminated with power line and ECG noise at different SNR levels. A comparative study of various techniques reveals that the performance of BR-ABC algorithm is better in noisy environment. Our simulation results show that the ANC filter using BR-ABC technique provides 15 dB improvement in output average SNR, 63 and 83% reduction in MSE and ME, respectively as compared to ANC filter based on PSO technique. Further, the ANC filter designed using BR-ABC technique enhances the correlation between output and pure EMG signal.
Biomedical Engineering Letters – Springer Journals
Published: Dec 28, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.