Access the full text.
Sign up today, get DeepDyve free for 14 days.
The development of green synthesis route using plant extract as a simple, cost-effective, and eco-friendly method for the synthesis of nanoparticles has become a major focus of researchers in recent years. In the present study, a novel continuous tri-fluid tortuous microfluidic chip (CTTM) was constructed to induce simultaneous mixing, Dean vortices, tortuosity, and repetitive bending in fluid behavior in order to plant-mediated synthesis of zinc selenide (ZnSe) nanoparticles. Additionally, the anti-pathogenic activity of nanoparticles against a human pathogen (E. coli) through the disruption of the cell membrane and the evaluation of the subsequent flow of cellular components such as continuous leakages of K+, nucleic acid, and intracellular protein was examined using the proposed chip. According to the results, by changing the flow rates up to 1.50 mL/min, nanoparticles with narrow size distribution were obtained. It was found that the nanoparticles sterilization effect in the case of α (Vnanoparticles/Vbacteria strain) =2 was obviously better than α = 0.5 under similar concentration and culture conditions. In this case, when the residence time and nanoparticle concentration tended to the maximum values, the release of intracellular components increased. Light microscopy and SEM clearly confirmed the ability of the antibacterial effects of nanoparticles to disrupt the bacteria membrane. Moreover, the inhibitory activity of the fabricated nanoparticles through a protein denaturation test using human serum albumin (HSA) showed an acceptable ability to inhibit protein denaturation compared to the inhibition of diclofenac sodium as a standard anti-inflammatory drug at the same concentration.
Journal of Flow Chemistry – Springer Journals
Published: Sep 1, 2022
Keywords: Nanoparticles; Tortuosity; Tri-fluid microfluidic chip; Intracellular components; Green approach
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.