Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A review of clonal selection algorithm and its applications

A review of clonal selection algorithm and its applications Recently, clonal selection theory in the immune system has received the attention of researchers and given them inspiration to create algorithms that evolve candidate solutions by means of selection, cloning, and mutation procedures. Moreover, diversity in the population is enabled by means of the receptor editing process. The Clonal Selection Algorithm (CSA) in its canonical form and its various versions are used to solve different types of problems and are reported to perform better compared with other heuristics (i.e., genetic algorithms, neural networks, etc.) in some cases, such as function optimization and pattern recognition. Although the studies related with CSA are increasingly popular, according to our best knowledge, there is no study summarizing the basic features of these algorithms, hybrid algorithms, and the application areas of these algorithms all in one paper. Therefore, this study aims to summarize the powerful characteristics and general review of CSA. In addition, CSA based hybrid algorithms are reviewed, and open research areas are discussed for further research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Artificial Intelligence Review Springer Journals

A review of clonal selection algorithm and its applications

Loading next page...
 
/lp/springer-journals/a-review-of-clonal-selection-algorithm-and-its-applications-4O4dLBlKy3
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Computer Science; Computer Science, general; Artificial Intelligence (incl. Robotics)
ISSN
0269-2821
eISSN
1573-7462
DOI
10.1007/s10462-011-9206-1
Publisher site
See Article on Publisher Site

Abstract

Recently, clonal selection theory in the immune system has received the attention of researchers and given them inspiration to create algorithms that evolve candidate solutions by means of selection, cloning, and mutation procedures. Moreover, diversity in the population is enabled by means of the receptor editing process. The Clonal Selection Algorithm (CSA) in its canonical form and its various versions are used to solve different types of problems and are reported to perform better compared with other heuristics (i.e., genetic algorithms, neural networks, etc.) in some cases, such as function optimization and pattern recognition. Although the studies related with CSA are increasingly popular, according to our best knowledge, there is no study summarizing the basic features of these algorithms, hybrid algorithms, and the application areas of these algorithms all in one paper. Therefore, this study aims to summarize the powerful characteristics and general review of CSA. In addition, CSA based hybrid algorithms are reviewed, and open research areas are discussed for further research.

Journal

Artificial Intelligence ReviewSpringer Journals

Published: Jan 29, 2011

References