Access the full text.
Sign up today, get DeepDyve free for 14 days.
A fractional [a, b]-factor of a graph G is a function h from E(G) to [0, 1] satisfying a≤dGh(v)≤b\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$a \le d_G^h(v) \le b$$\end{document} for every vertex v of G, where dGh(v)=∑e∈E(v)h(e)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$d_G^h(v) = \sum\limits_{e \in E(v)} {h(e)} $$\end{document} and E(v) = {e = uv : u ∈ V (G)}. A graph G is called fractional [a, b]-covered if G contains a fractional [a, b]-factor h with h(e) = 1 for any edge e of G. A graph G is called fractional (a, b, k)-critical covered if G — Q is fractional [a, b]-covered for any Q ⊆ V(G) with ∣Q∣ = k. In this article, we demonstrate a neighborhood condition for a graph to be fractional (a, b, k)-critical covered. Furthermore, we claim that the result is sharp.
Acta Mathematicae Applicatae Sinica – Springer Journals
Published: Oct 1, 2021
Keywords: graph; neighborhood; fractional [a, b]-factor; fractional [a, b]-covered graph; fractional (a, b, k)-critical covered graph; 05C70; 05C72
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.