Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Resource Logic for Multi-Agent Plan Merging

A Resource Logic for Multi-Agent Plan Merging In a multi-agent system, agents are carrying out certain tasks by executing plans. Consequently, the problem of finding a plan, given a certain goal, has been given a lot of attention in the literature. Instead of concentrating on this problem, the focus of this paper is on cooperation between agents which already have constructed plans for their goals. By cooperating, agents might reduce the number of actions they have to perform in order to fulfill their goals. The key idea is that in carrying out a plan an agent possibly produces side products that can be used as resources by other agents. As a result, an other agent can discard some of its planned actions. This process of exchanging products, called plan merging, results in distributed plans in which agents become dependent on each other, but are able to attain their goals more efficiently. In order to model this kind of cooperation, a new formalism is developed in which side products are modeled explicitly. The formalism is a resource logic based on the notions of resource, skill, goal, and service. Starting with some resources, an agent can perform a number of skills in order to produce other resources which suffice to achieve some given goals. Here, a skill is an elementary production process taking as inputs resources satisfying certain constraints. A service is a serial or parallel composition of skills acting as a program. An operational semantics is developed for these services as programs. Using this formalism, an algorithm for plan merging is developed, which is anytime and runs in polynomial time. Furthermore, a variant of this algorithm is proposed that handles the exchange of resources in a more flexible way. The ideas in the paper will be illustrated by an example from public transportation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Mathematics and Artificial Intelligence Springer Journals

Loading next page...
 
/lp/springer-journals/a-resource-logic-for-multi-agent-plan-merging-hRzfto251R

References (30)

Publisher
Springer Journals
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mathematics, general; Computer Science, general; Complex Systems
ISSN
1012-2443
eISSN
1573-7470
DOI
10.1023/A:1020236119243
Publisher site
See Article on Publisher Site

Abstract

In a multi-agent system, agents are carrying out certain tasks by executing plans. Consequently, the problem of finding a plan, given a certain goal, has been given a lot of attention in the literature. Instead of concentrating on this problem, the focus of this paper is on cooperation between agents which already have constructed plans for their goals. By cooperating, agents might reduce the number of actions they have to perform in order to fulfill their goals. The key idea is that in carrying out a plan an agent possibly produces side products that can be used as resources by other agents. As a result, an other agent can discard some of its planned actions. This process of exchanging products, called plan merging, results in distributed plans in which agents become dependent on each other, but are able to attain their goals more efficiently. In order to model this kind of cooperation, a new formalism is developed in which side products are modeled explicitly. The formalism is a resource logic based on the notions of resource, skill, goal, and service. Starting with some resources, an agent can perform a number of skills in order to produce other resources which suffice to achieve some given goals. Here, a skill is an elementary production process taking as inputs resources satisfying certain constraints. A service is a serial or parallel composition of skills acting as a program. An operational semantics is developed for these services as programs. Using this formalism, an algorithm for plan merging is developed, which is anytime and runs in polynomial time. Furthermore, a variant of this algorithm is proposed that handles the exchange of resources in a more flexible way. The ideas in the paper will be illustrated by an example from public transportation.

Journal

Annals of Mathematics and Artificial IntelligenceSpringer Journals

Published: Oct 10, 2004

There are no references for this article.