Access the full text.
Sign up today, get DeepDyve free for 14 days.
Most fare collection systems are initially installed as single-purpose devices which are only used for collecting fare; however, many transit planners consider them as a rich source of data required for studying the passengers' trip trends. Although, usually, there is no transaction made at the destination stop, making some assumptions can help us infer the destination. In this study, we present an integrated procedure that can generate origin–destination matrices and passenger load profiles as essential tools for public transport planning processes. Moreover, this procedure can be used to detect and analyze trips that include transfers. In an attempt to employ the proposed algorithm in the Tehran bus rapid transit network, 52% of the transactions could be used to trace the trips in an origin–destination format. The trips that include transfers are recognized and analyzed further. Our detailed results of the method application indicate that the proposed algorithm is a productive and economical public transport planning method.
Public Transport – Springer Journals
Published: Oct 21, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.