Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A practical approach to model checking Duration Calculus using Presburger Arithmetic

A practical approach to model checking Duration Calculus using Presburger Arithmetic This paper investigates the feasibility of reducing a model-checking problem K ⊧ ϕ for discrete time Duration Calculus to the decision problem for Presburger Arithmetic. Theoretical results point at severe limitations of this approach: (1) the reduction in Fränzle and Hansen (Int J Softw Inform 3(2–3):171–196, 2009) produces Presburger formulas whose sizes grow exponentially in the chop-depth of ϕ, where chop is an interval modality originating from Moszkowski (IEEE Comput 18(2):10–19, 1985), and (2) the decision problem for Presburger Arithmetic has a double exponential lower bound and a triple exponential upper bound. The generated Presburger formulas have a rich Boolean structure, many quantifiers and quantifier alternations. Such formulas are simplified using so-called guarded formulas, where a guard provides a context used to simplify the rest of the formula. A normal form for guarded formulas supports global effects of local simplifications. Combined with quantifier-elimination techniques, this normalization gives significant reductions in formula sizes and in the number of quantifiers. As an example, we solve a configuration problem using the SMT-solver Z3 as backend. Benefits and the current limits of the approach are illustrated by a family of examples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Mathematics and Artificial Intelligence Springer Journals

A practical approach to model checking Duration Calculus using Presburger Arithmetic

Loading next page...
 
/lp/springer-journals/a-practical-approach-to-model-checking-duration-calculus-using-DXO27yyrF3

References (24)

Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mathematics, general; Computer Science, general; Statistical Physics, Dynamical Systems and Complexity
ISSN
1012-2443
eISSN
1573-7470
DOI
10.1007/s10472-013-9373-7
Publisher site
See Article on Publisher Site

Abstract

This paper investigates the feasibility of reducing a model-checking problem K ⊧ ϕ for discrete time Duration Calculus to the decision problem for Presburger Arithmetic. Theoretical results point at severe limitations of this approach: (1) the reduction in Fränzle and Hansen (Int J Softw Inform 3(2–3):171–196, 2009) produces Presburger formulas whose sizes grow exponentially in the chop-depth of ϕ, where chop is an interval modality originating from Moszkowski (IEEE Comput 18(2):10–19, 1985), and (2) the decision problem for Presburger Arithmetic has a double exponential lower bound and a triple exponential upper bound. The generated Presburger formulas have a rich Boolean structure, many quantifiers and quantifier alternations. Such formulas are simplified using so-called guarded formulas, where a guard provides a context used to simplify the rest of the formula. A normal form for guarded formulas supports global effects of local simplifications. Combined with quantifier-elimination techniques, this normalization gives significant reductions in formula sizes and in the number of quantifiers. As an example, we solve a configuration problem using the SMT-solver Z3 as backend. Benefits and the current limits of the approach are illustrated by a family of examples.

Journal

Annals of Mathematics and Artificial IntelligenceSpringer Journals

Published: Aug 29, 2013

There are no references for this article.