Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this paper we investigate the motion of a Chaplygin sphere rolling without slipping on a plane performing horizontal periodic oscillations. We show that in the system under consideration the projections of the angular momentum onto the axes of the fixed coordinate system remain unchanged. The investigation of the reduced system on a fixed level set of first integrals reduces to analyzing a three-dimensional period advance map on \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$SO(3)$$\end{document}. The analysis of this map suggests that in the general case the problem considered is nonintegrable. We find partial solutions to the system which are a generalization of permanent rotations and correspond to nonuniform rotations about a body- and space-fixed axis. We also find a particular integrable case which, after time is rescaled, reduces to the classical Chaplygin sphere rolling problem on the zero level set of the area integral.
Regular and Chaotic Dynamics – Springer Journals
Published: Nov 1, 2021
Keywords: Chaplygin sphere; rolling motion; nonholonomic constraint; nonautonomous dynamical system; periodic oscillations; permanent rotations; integrable case; period advance map
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.