Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A numerical study of non-Darcy flow in EGS heat reservoirs during heat extraction

A numerical study of non-Darcy flow in EGS heat reservoirs during heat extraction Abstract Underground non-Darcy fluid flow has been observed and investigated for decades in the petroleum industry. It is deduced by analogy that the fluid flow in enhanced geothermal system (EGS) heat reservoirs may also be in the non-Darcy regime under some conditions. In this paper, a transient 3D model was presented, taking into consideration the non-Darcy fluid flow in EGS heat reservoirs, to simulate the EGS long-term heat extraction process. Then, the non-Darcy flow behavior in water- and supercritical CO2 (SCCO2)-based EGSs was simulated and discussed. It is found that non-Darcy effects decrease the mass flow rate of the fluid injected and reduce the heat extraction rate of EGS as a flow resistance in addition to the Darcy resistance which is imposed to the seepage flow in EGS heat reservoirs. Compared with the water-EGS, the SCCO2-EGS are more prone to experiencing much stronger non-Darcy flow due to the much larger mobility of the SCCO2. The non-Darcy flow in SCCO2- EGSs may thus greatly reduce their heat extraction performance. Further, a criterion was analyzed and proposed to judge the onset of the non-Darcy flow in EGS heat reservoirs. The fluid flow rate and the initial thermal state of the reservoir were taken and the characteristic Forchheimer number of an EGS was calculated. If the calculated Forchheimer number is larger than 0.2, the fluid flow in EGS heat reservoirs experiences non-negligible non-Darcy flow characteristic. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Frontiers in Energy" Springer Journals

A numerical study of non-Darcy flow in EGS heat reservoirs during heat extraction

Loading next page...
 
/lp/springer-journals/a-numerical-study-of-non-darcy-flow-in-egs-heat-reservoirs-during-heat-h93wzxlZZs

References (33)

Publisher
Springer Journals
Copyright
2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
ISSN
2095-1701
eISSN
2095-1698
DOI
10.1007/s11708-019-0612-4
Publisher site
See Article on Publisher Site

Abstract

Abstract Underground non-Darcy fluid flow has been observed and investigated for decades in the petroleum industry. It is deduced by analogy that the fluid flow in enhanced geothermal system (EGS) heat reservoirs may also be in the non-Darcy regime under some conditions. In this paper, a transient 3D model was presented, taking into consideration the non-Darcy fluid flow in EGS heat reservoirs, to simulate the EGS long-term heat extraction process. Then, the non-Darcy flow behavior in water- and supercritical CO2 (SCCO2)-based EGSs was simulated and discussed. It is found that non-Darcy effects decrease the mass flow rate of the fluid injected and reduce the heat extraction rate of EGS as a flow resistance in addition to the Darcy resistance which is imposed to the seepage flow in EGS heat reservoirs. Compared with the water-EGS, the SCCO2-EGS are more prone to experiencing much stronger non-Darcy flow due to the much larger mobility of the SCCO2. The non-Darcy flow in SCCO2- EGSs may thus greatly reduce their heat extraction performance. Further, a criterion was analyzed and proposed to judge the onset of the non-Darcy flow in EGS heat reservoirs. The fluid flow rate and the initial thermal state of the reservoir were taken and the characteristic Forchheimer number of an EGS was calculated. If the calculated Forchheimer number is larger than 0.2, the fluid flow in EGS heat reservoirs experiences non-negligible non-Darcy flow characteristic.

Journal

"Frontiers in Energy"Springer Journals

Published: Sep 1, 2019

There are no references for this article.