Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A novel composite anode for LIB prepared via template-like-directed electrodepositing Cu–Sn alloy process

A novel composite anode for LIB prepared via template-like-directed electrodepositing Cu–Sn alloy... A novel composite anode material consisted of electrodeposited Cu–Sn alloy dispersing in a conductive micro-porous carbon membrane coated on Cu current collector was investigated. The composite material was prepared by template-like-directed electrodepositing Cu–Sn alloy process and then annealing. The template-like microporous membrane electrode was obtained as follows: (1) casting a polyacrylonitrile (PAN) solution on a copper foil, (2) then immersing the copper foil into deionized water for phase inversion, and (3) drying the membrane electrode. This method provided the composite material with high decentralization of Cu–Sn alloy and supporting medium function of conductive carbon membrane deriving from pyrolysis of PAN. SEM, XRD, and EDS analysis confirmed this structure. The characteristic structure was beneficial to inhibit the aggregation among Cu–Sn microparticles, to relax the volume expansion during cycling, and to improve the cycle ability of electrode. The reversible charge/discharge capacity of the composite material remained more than 426.6 and 445.1 mAh g−1, respectively, after 70 cycles, while that of the electrode prepared by electrodepositing Cu–Sn on a bare Cu foil decreased seriously to only 11.3 mAh g−1. These results show that the novel preparing anode process for LIB is a promising method and can achieve composite materials with larger specific capacity and long cycle life. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ionics Springer Journals

A novel composite anode for LIB prepared via template-like-directed electrodepositing Cu–Sn alloy process

Loading next page...
 
/lp/springer-journals/a-novel-composite-anode-for-lib-prepared-via-template-like-directed-6lGYcmqXch

References (21)

Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Chemistry; Electrochemistry; Renewable and Green Energy; Optical and Electronic Materials; Condensed Matter Physics; Energy Storage
ISSN
0947-7047
eISSN
1862-0760
DOI
10.1007/s11581-007-0157-0
Publisher site
See Article on Publisher Site

Abstract

A novel composite anode material consisted of electrodeposited Cu–Sn alloy dispersing in a conductive micro-porous carbon membrane coated on Cu current collector was investigated. The composite material was prepared by template-like-directed electrodepositing Cu–Sn alloy process and then annealing. The template-like microporous membrane electrode was obtained as follows: (1) casting a polyacrylonitrile (PAN) solution on a copper foil, (2) then immersing the copper foil into deionized water for phase inversion, and (3) drying the membrane electrode. This method provided the composite material with high decentralization of Cu–Sn alloy and supporting medium function of conductive carbon membrane deriving from pyrolysis of PAN. SEM, XRD, and EDS analysis confirmed this structure. The characteristic structure was beneficial to inhibit the aggregation among Cu–Sn microparticles, to relax the volume expansion during cycling, and to improve the cycle ability of electrode. The reversible charge/discharge capacity of the composite material remained more than 426.6 and 445.1 mAh g−1, respectively, after 70 cycles, while that of the electrode prepared by electrodepositing Cu–Sn on a bare Cu foil decreased seriously to only 11.3 mAh g−1. These results show that the novel preparing anode process for LIB is a promising method and can achieve composite materials with larger specific capacity and long cycle life.

Journal

IonicsSpringer Journals

Published: Sep 18, 2007

There are no references for this article.