# A Note on the Conjectures of Hayman, Mues and Gol’dberg

A Note on the Conjectures of Hayman, Mues and Gol’dberg As consequences of Yamanoi’s (Proc Lond Math Soc 106(3):703–780, 2013) important paper, we prove the following results. (1) Let $$f$$ f be a transcendental meromorphic function on $${\mathbb{C }}$$ C . Then for any $$k\ge 1$$ k ≥ 1 , \begin{aligned} \underset{a\in {\mathbb{C }}}{\sum }\delta (a,f^{(k)})+\sum ^{\infty }_{j=k+1}\underset{b\in {\mathbb{C }}/\{0\}}{\sum }\delta (b, f^{(j)}) \le 1. \end{aligned} ∑ a ∈ C δ ( a , f ( k ) ) + ∑ j = k + 1 ∞ ∑ b ∈ C / { 0 } δ ( b , f ( j ) ) ≤ 1 . (2) Let $$f$$ f be a transcendental meromorphic function on $$\mathbb{C }$$ C having at most finitely many simple zeros. Then $$f^{(k)}$$ f ( k ) takes on every non-zero complex value infinitely often for $$k=1,2,3,\ldots$$ k = 1 , 2 , 3 , … . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Methods and Function Theory Springer Journals

# A Note on the Conjectures of Hayman, Mues and Gol’dberg

, Volume 13 (4) – Sep 26, 2013
11 pages

/lp/springer-journals/a-note-on-the-conjectures-of-hayman-mues-and-gol-dberg-KKumBJOmV9
Publisher
Springer Journals
Subject
Mathematics; Analysis; Computational Mathematics and Numerical Analysis; Functions of a Complex Variable
ISSN
1617-9447
eISSN
2195-3724
DOI
10.1007/s40315-013-0036-9
Publisher site
See Article on Publisher Site

### Abstract

As consequences of Yamanoi’s (Proc Lond Math Soc 106(3):703–780, 2013) important paper, we prove the following results. (1) Let $$f$$ f be a transcendental meromorphic function on $${\mathbb{C }}$$ C . Then for any $$k\ge 1$$ k ≥ 1 , \begin{aligned} \underset{a\in {\mathbb{C }}}{\sum }\delta (a,f^{(k)})+\sum ^{\infty }_{j=k+1}\underset{b\in {\mathbb{C }}/\{0\}}{\sum }\delta (b, f^{(j)}) \le 1. \end{aligned} ∑ a ∈ C δ ( a , f ( k ) ) + ∑ j = k + 1 ∞ ∑ b ∈ C / { 0 } δ ( b , f ( j ) ) ≤ 1 . (2) Let $$f$$ f be a transcendental meromorphic function on $$\mathbb{C }$$ C having at most finitely many simple zeros. Then $$f^{(k)}$$ f ( k ) takes on every non-zero complex value infinitely often for $$k=1,2,3,\ldots$$ k = 1 , 2 , 3 , … .

### Journal

Computational Methods and Function TheorySpringer Journals

Published: Sep 26, 2013

### References

Access the full text.