Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A note on the asymptotics of the polymer measures in one dimension

A note on the asymptotics of the polymer measures in one dimension Giveng∈(0, ∞), we prove that $$\mathop {\lim }\limits_{T \to \infty } E_{v(g,T)} \left| {\frac{{W(T)}}{T}} \right|^\alpha = (g^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} C)^\alpha ,\forall \alpha > 0$$ for some constantC∈(0, ∞), wherev(g, T) is the polymer measure defined onC 0([0,T] →R 1), and {W(t)} t∈[0,T] is the corresponding coordinate process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mathematicae Applicatae Sinica Springer Journals

A note on the asymptotics of the polymer measures in one dimension

Acta Mathematicae Applicatae Sinica , Volume 8 (3) – Jul 15, 2005

Loading next page...
 
/lp/springer-journals/a-note-on-the-asymptotics-of-the-polymer-measures-in-one-dimension-DR9UvoZhd8
Publisher
Springer Journals
Copyright
Copyright © 1992 by Science Press
Subject
Mathematics; Applications of Mathematics; Math Applications in Computer Science; Theoretical, Mathematical and Computational Physics
ISSN
0168-9673
eISSN
1618-3932
DOI
10.1007/BF02014577
Publisher site
See Article on Publisher Site

Abstract

Giveng∈(0, ∞), we prove that $$\mathop {\lim }\limits_{T \to \infty } E_{v(g,T)} \left| {\frac{{W(T)}}{T}} \right|^\alpha = (g^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} C)^\alpha ,\forall \alpha > 0$$ for some constantC∈(0, ∞), wherev(g, T) is the polymer measure defined onC 0([0,T] →R 1), and {W(t)} t∈[0,T] is the corresponding coordinate process.

Journal

Acta Mathematicae Applicatae SinicaSpringer Journals

Published: Jul 15, 2005

There are no references for this article.