Access the full text.
Sign up today, get DeepDyve free for 14 days.
The therapeutic landscape of metastatic castration-resistant prostate cancer (mCRPC) has evolved considerably with the introduction of newer agents, such as poly-ADP ribose polymerase (PARP) inhibitors targeting DNA damage repair mutations. Combining and sequencing novel and existing therapies appropriately is necessary for optimizing the management of mCRPC and ensuring better treatment outcomes. The purpose of this review is to provide evidence-based answers to key clinical questions on treatment selection, treatment sequencing patterns, and factors influencing treatment decisions in the management of mCRPC in the era of PARP inhibitors. This article can also serve as a comprehensive guide to clinicians for optimizing genetic testing and counseling and management of patients with mCRPC. Although the PROfound study has validated the concept of PARP sensitivity across multiple genes associated with homologous recombination repair (HRR) in mCRPC and highlighted the importance of genomic testing in this at-risk patient population, it still remains unclear how patients with rarer HRR mutations will respond to PARP inhibitors. Therefore, real-world data obtained through registry-based randomized controlled trials in the future may help produce robust scientific evidence for supporting optimal clinician decision-making in the management of mCRPC.
Oncology and Therapy – Springer Journals
Published: Dec 1, 2021
Keywords: Castration-resistant; Genetic testing; Metastasis; PARP inhibitors; PROfound study; Prostate cancer
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.