Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper presents a new algorithm to find an appropriate similarityunder which we apply legal rules analogically. Since there may exist a lotof similarities between the premises of rule and a case in inquiry, we haveto select an appropriate similarity that is relevant to both thelegal rule and a top goal of our legal reasoning. For this purpose, a newcriterion to distinguish the appropriate similarities from the others isproposed and tested. The criterion is based on Goal-DependentAbstraction (GDA) to select a similarity such that an abstraction basedon the similarity never loses the necessary information to prove the ground (purpose of legislation) of the legal rule. In order to cope withour huge space of similarities, our GDA algorithm uses some constraintsto prune useless similarities.
Artificial Intelligence and Law – Springer Journals
Published: Sep 19, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.