Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A formal analysis of the role of multi-point crossover in genetic algorithms

A formal analysis of the role of multi-point crossover in genetic algorithms On the basis of early theoretical and empirical studies, genetic algorithms have typically used 1 and 2-point crossover operators as the standard mechanisms for implementing recombination. However, there have been a number of recent studies, primarily empirical in nature, which have shown the benefits of crossover operators involving a higher number of crossover points. From a traditional theoretical point of view, the most surprising of these new results relate to uniform crossover, which involves on the averageL/2 crossover points for strings of lengthL. In this paper we extend the existing theoretical results in an attempt to provide a broader explanatory and predictive theory of the role of multi-point crossover in genetic algorithms. In particular, we extend the traditional disruption analysis to include two general forms of multi-point crossover:n-point crossover and uniform crossover. We also analyze two other aspects of multi-point crossover operators, namely, their recombination potential and exploratory power. The results of this analysis provide a much clearer view of the role of multi-point crossover in genetic algorithms. The implications of these results on implementation issues and performance are discussed, and several directions for further research are suggested. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Mathematics and Artificial Intelligence Springer Journals

A formal analysis of the role of multi-point crossover in genetic algorithms

Loading next page...
 
/lp/springer-journals/a-formal-analysis-of-the-role-of-multi-point-crossover-in-genetic-MYR2O2eWfO

References (13)

Publisher
Springer Journals
Copyright
Copyright
Subject
Computer Science; Artificial Intelligence; Mathematics, general; Computer Science, general; Complex Systems
ISSN
1012-2443
eISSN
1573-7470
DOI
10.1007/BF01530777
Publisher site
See Article on Publisher Site

Abstract

On the basis of early theoretical and empirical studies, genetic algorithms have typically used 1 and 2-point crossover operators as the standard mechanisms for implementing recombination. However, there have been a number of recent studies, primarily empirical in nature, which have shown the benefits of crossover operators involving a higher number of crossover points. From a traditional theoretical point of view, the most surprising of these new results relate to uniform crossover, which involves on the averageL/2 crossover points for strings of lengthL. In this paper we extend the existing theoretical results in an attempt to provide a broader explanatory and predictive theory of the role of multi-point crossover in genetic algorithms. In particular, we extend the traditional disruption analysis to include two general forms of multi-point crossover:n-point crossover and uniform crossover. We also analyze two other aspects of multi-point crossover operators, namely, their recombination potential and exploratory power. The results of this analysis provide a much clearer view of the role of multi-point crossover in genetic algorithms. The implications of these results on implementation issues and performance are discussed, and several directions for further research are suggested.

Journal

Annals of Mathematics and Artificial IntelligenceSpringer Journals

Published: Apr 5, 2005

There are no references for this article.