Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Fast Method for the Segmentation of Synaptic Junctions and Mitochondria in Serial Electron Microscopic Images of the Brain

A Fast Method for the Segmentation of Synaptic Junctions and Mitochondria in Serial Electron... Recent electron microscopy (EM) imaging techniques permit the automatic acquisition of a large number of serial sections from brain samples. Manual segmentation of these images is tedious, time-consuming and requires a high degree of user expertise. Therefore, there is considerable interest in developing automatic segmentation methods. However, currently available methods are computationally demanding in terms of computer time and memory usage, and to work properly many of them require image stacks to be isotropic, that is, voxels must have the same size in the X, Y and Z axes. We present a method that works with anisotropic voxels and that is computationally efficient allowing the segmentation of large image stacks. Our approach involves anisotropy-aware regularization via conditional random field inference and surface smoothing techniques to improve the segmentation and visualization. We have focused on the segmentation of mitochondria and synaptic junctions in EM stacks from the cerebral cortex, and have compared the results to those obtained by other methods. Our method is faster than other methods with similar segmentation results. Our image regularization procedure introduces high-level knowledge about the structure of labels. We have also reduced memory requirements with the introduction of energy optimization in overlapping partitions, which permits the regularization of very large image stacks. Finally, the surface smoothing step improves the appearance of three-dimensional renderings of the segmented volumes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroinformatics Springer Journals

A Fast Method for the Segmentation of Synaptic Junctions and Mitochondria in Serial Electron Microscopic Images of the Brain

Loading next page...
 
/lp/springer-journals/a-fast-method-for-the-segmentation-of-synaptic-junctions-and-4HeIP2rgN3
Publisher
Springer Journals
Copyright
Copyright © 2016 by The Author(s)
Subject
Biomedicine; Neurosciences; Bioinformatics; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Neurology
ISSN
1539-2791
eISSN
1559-0089
DOI
10.1007/s12021-015-9288-z
pmid
26780198
Publisher site
See Article on Publisher Site

Abstract

Recent electron microscopy (EM) imaging techniques permit the automatic acquisition of a large number of serial sections from brain samples. Manual segmentation of these images is tedious, time-consuming and requires a high degree of user expertise. Therefore, there is considerable interest in developing automatic segmentation methods. However, currently available methods are computationally demanding in terms of computer time and memory usage, and to work properly many of them require image stacks to be isotropic, that is, voxels must have the same size in the X, Y and Z axes. We present a method that works with anisotropic voxels and that is computationally efficient allowing the segmentation of large image stacks. Our approach involves anisotropy-aware regularization via conditional random field inference and surface smoothing techniques to improve the segmentation and visualization. We have focused on the segmentation of mitochondria and synaptic junctions in EM stacks from the cerebral cortex, and have compared the results to those obtained by other methods. Our method is faster than other methods with similar segmentation results. Our image regularization procedure introduces high-level knowledge about the structure of labels. We have also reduced memory requirements with the introduction of energy optimization in overlapping partitions, which permits the regularization of very large image stacks. Finally, the surface smoothing step improves the appearance of three-dimensional renderings of the segmented volumes.

Journal

NeuroinformaticsSpringer Journals

Published: Jan 16, 2016

References