Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A doubly critical semilinear heat equation in the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{am ...

A doubly critical semilinear heat equation in the L1\documentclass[12pt]{minimal}... We study the existence and nonexistence for a Cauchy problem of the semilinear heat equation: ∂tu=Δu+|u|p-1uinRN×(0,T),u(x,0)=ϕ(x)inRN\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _tu=\Delta u+|u|^{p-1}u &{} \text {in}\ \mathbb {R}^N\times (0,T),\\ u(x,0)=\phi (x) &{} \text {in}\ \mathbb {R}^N\end{array}\right. } \end{aligned}$$\end{document}in L1(RN)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^1(\mathbb {R}^N)$$\end{document}. Here, N≥1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$N\ge 1$$\end{document}, p=1+2/N\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p=1+2/N$$\end{document} and ϕ∈L1(RN)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi \in L^1(\mathbb {R}^N)$$\end{document} is a possibly sign-changing initial function. Since N(p-1)/2=1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$N(p-1)/2=1$$\end{document}, the L1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^1$$\end{document} space is scale critical and this problem is known as a doubly critical case. It is known that a solution does not necessarily exist for every ϕ∈L1(RN)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi \in L^1(\mathbb {R}^N)$$\end{document}. Let Xq:={ϕ∈Lloc1(RN)|∫RN|ϕ|log(e+|ϕ|)qdx<∞}(⊂L1(RN))\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$X_q:=\{\phi \in L^1_\mathrm{{loc}}(\mathbb {R}^N)\ |\ \int _{\mathbb {R}^N}|\phi |\left[ \log (e+|\phi |)\right] ^q\mathrm{d}x<\infty \}(\subset L^1(\mathbb {R}^N))$$\end{document}. In this paper, we construct a local-in-time mild solution in L1(RN)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^1(\mathbb {R}^N)$$\end{document} for ϕ∈Xq\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi \in X_q$$\end{document} if q≥N/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q\ge N/2$$\end{document}. We show that, for each 0≤q<N/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0\le q<N/2$$\end{document}, there is a nonnegative initial function ϕ0∈Xq\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi _0\in X_q$$\end{document} such that the problem has no nonnegative solution, using a necessary condition given by Baras–Pierre (Ann Inst Henri Poincaré Anal Non Linéaire 2:185–212, 1985). Since Xq⊂XN/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$X_q\subset X_{N/2}$$\end{document} for q≥N/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q\ge N/2$$\end{document}, XN/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$X_{N/2}$$\end{document} becomes a sharp integrability condition. We also prove a uniqueness in a certain set of functions which guarantees the uniqueness of the solution constructed by our method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Evolution Equations Springer Journals

A doubly critical semilinear heat equation in the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{am ...

Journal of Evolution Equations , Volume OnlineFirst – Apr 1, 2020

Loading next page...
 
/lp/springer-journals/a-doubly-critical-semilinear-heat-equation-in-the-l1-documentclass-7ay36moX8Q

References (20)

Publisher
Springer Journals
Copyright
Copyright © Springer Nature Switzerland AG 2020
ISSN
1424-3199
eISSN
1424-3202
DOI
10.1007/s00028-020-00573-2
Publisher site
See Article on Publisher Site

Abstract

We study the existence and nonexistence for a Cauchy problem of the semilinear heat equation: ∂tu=Δu+|u|p-1uinRN×(0,T),u(x,0)=ϕ(x)inRN\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _tu=\Delta u+|u|^{p-1}u &{} \text {in}\ \mathbb {R}^N\times (0,T),\\ u(x,0)=\phi (x) &{} \text {in}\ \mathbb {R}^N\end{array}\right. } \end{aligned}$$\end{document}in L1(RN)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^1(\mathbb {R}^N)$$\end{document}. Here, N≥1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$N\ge 1$$\end{document}, p=1+2/N\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p=1+2/N$$\end{document} and ϕ∈L1(RN)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi \in L^1(\mathbb {R}^N)$$\end{document} is a possibly sign-changing initial function. Since N(p-1)/2=1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$N(p-1)/2=1$$\end{document}, the L1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^1$$\end{document} space is scale critical and this problem is known as a doubly critical case. It is known that a solution does not necessarily exist for every ϕ∈L1(RN)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi \in L^1(\mathbb {R}^N)$$\end{document}. Let Xq:={ϕ∈Lloc1(RN)|∫RN|ϕ|log(e+|ϕ|)qdx<∞}(⊂L1(RN))\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$X_q:=\{\phi \in L^1_\mathrm{{loc}}(\mathbb {R}^N)\ |\ \int _{\mathbb {R}^N}|\phi |\left[ \log (e+|\phi |)\right] ^q\mathrm{d}x<\infty \}(\subset L^1(\mathbb {R}^N))$$\end{document}. In this paper, we construct a local-in-time mild solution in L1(RN)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^1(\mathbb {R}^N)$$\end{document} for ϕ∈Xq\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi \in X_q$$\end{document} if q≥N/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q\ge N/2$$\end{document}. We show that, for each 0≤q<N/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0\le q<N/2$$\end{document}, there is a nonnegative initial function ϕ0∈Xq\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\phi _0\in X_q$$\end{document} such that the problem has no nonnegative solution, using a necessary condition given by Baras–Pierre (Ann Inst Henri Poincaré Anal Non Linéaire 2:185–212, 1985). Since Xq⊂XN/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$X_q\subset X_{N/2}$$\end{document} for q≥N/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q\ge N/2$$\end{document}, XN/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$X_{N/2}$$\end{document} becomes a sharp integrability condition. We also prove a uniqueness in a certain set of functions which guarantees the uniqueness of the solution constructed by our method.

Journal

Journal of Evolution EquationsSpringer Journals

Published: Apr 1, 2020

There are no references for this article.