# A Condition on Hamilton-Connected Line Graphs

A Condition on Hamilton-Connected Line Graphs A graph G is Hamilton-connected if for any pair of distinct vertices u,v∈V(G)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$u, v \in V(G)$$\end{document}, G has a spanning (u, v)-path; G is 1-hamiltonian if for any vertex subset S⊆V(G)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S \subseteq {V(G)}$$\end{document} with |S|≤1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$|S| \le 1$$\end{document}, G-S\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$G - S$$\end{document} has a spanning cycle. Let δ(G)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta (G)$$\end{document}, α′(G)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha '(G)$$\end{document} and L(G) denote the minimum degree, the matching number and the line graph of a graph G, respectively. The following result is obtained. Let G be a simple graph with |E(G)|≥3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$|E(G)| \ge 3$$\end{document}. If δ(G)≥α′(G)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta (G) \ge \alpha '(G)$$\end{document}, then each of the following holds. (i) L(G) is Hamilton-connected if and only if κ(L(G))≥3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\kappa (L(G))\ge 3$$\end{document}. (ii) L(G) is 1-hamiltonian if and only if κ(L(G))≥3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\kappa (L(G))\ge 3$$\end{document}. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the Malaysian Mathematical Sciences Society Springer Journals

# A Condition on Hamilton-Connected Line Graphs

, Volume 45 (2) – Mar 1, 2022
11 pages

/lp/springer-journals/a-condition-on-hamilton-connected-line-graphs-JzDU6zLlWL
Publisher
Springer Journals
Copyright © Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2021
ISSN
0126-6705
eISSN
2180-4206
DOI
10.1007/s40840-021-01232-6
Publisher site
See Article on Publisher Site

### Abstract

A graph G is Hamilton-connected if for any pair of distinct vertices u,v∈V(G)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$u, v \in V(G)$$\end{document}, G has a spanning (u, v)-path; G is 1-hamiltonian if for any vertex subset S⊆V(G)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S \subseteq {V(G)}$$\end{document} with |S|≤1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$|S| \le 1$$\end{document}, G-S\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$G - S$$\end{document} has a spanning cycle. Let δ(G)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta (G)$$\end{document}, α′(G)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha '(G)$$\end{document} and L(G) denote the minimum degree, the matching number and the line graph of a graph G, respectively. The following result is obtained. Let G be a simple graph with |E(G)|≥3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$|E(G)| \ge 3$$\end{document}. If δ(G)≥α′(G)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\delta (G) \ge \alpha '(G)$$\end{document}, then each of the following holds. (i) L(G) is Hamilton-connected if and only if κ(L(G))≥3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\kappa (L(G))\ge 3$$\end{document}. (ii) L(G) is 1-hamiltonian if and only if κ(L(G))≥3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\kappa (L(G))\ge 3$$\end{document}.

### Journal

Bulletin of the Malaysian Mathematical Sciences SocietySpringer Journals

Published: Mar 1, 2022

Keywords: Chvátal-Erdős condition; Hamilton-connected; Essential edge connectivity; Matching; Minimum degree; 1-hamiltonian; 05C45; 05C75

### References

Access the full text.

Sign up today, get DeepDyve free for 14 days.