Access the full text.
Sign up today, get DeepDyve free for 14 days.
Recent advances in tumor immunology and cancer immunotherapy have generated significant interest in the field of immuno-oncology. With the promise of these advances comes an increasing need to train the next generation of scientists who will support ongoing basic and clinical research efforts in this field. At this time, however, there remains a documented underrepresentation of tumor immunology as a core content area in many undergraduate science curricula. This study introduces a novel pedagogical strategy that aimed to promote undergraduate student interest in tumor immunology in ways that support recent education guidelines published by the American Association of Immunologists, and it highlights the efficacy of this approach in enhancing student understanding of concepts relevant to the Cancer-Immunity Cycle. Using RNA-sequencing data obtained from clinical specimens catalogued in The Cancer Genome Atlas, students performed Kaplan–Meier survival analyses to identify Cancer-Immunity Cycle genes with prognostic significance. After correlating expression of such genes with tumor-infiltrating immune cell populations using a bioinformatic tool to deconvolute whole tumor-transcriptome data, students undertook an exercise that requires integration of course content and findings from the primary literature to generate hypotheses about the influence of genetic factors and immune cell types on the Cancer-Immunity Cycle and overall patient outcome. A pre-/post-project assessment instrument demonstrated the efficacy of this approach as a means of improving undergraduate student understanding of core cancer immunology concepts. This report describes these data and discusses potential ways in which the project can be adapted to extend its utility to broad and diverse student populations.
Journal of Cancer Education – Springer Journals
Published: Sep 12, 2022
Keywords: Cancer; Immunology; Undergraduate education; Bioinformatics; The cancer genome atlas; RNA-sequencing; Cancer-immunity cycle; Tumor immunology
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.