Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

3D object retrieval using salient views

3D object retrieval using salient views This paper presents a method for selecting salient 2D views to describe 3D objects for the purpose of retrieval. The views are obtained by first identifying salient points via a learning approach that uses shape characteristics of the 3D points (Atmosukarto and Shapiro in International workshop on structural, syntactic, and statistical pattern recognition, 2008; Atmosukarto and Shapiro in ACM multimedia information retrieval, 2008). The salient views are selected by choosing views with multiple salient points on the silhouette of the object. Silhouette-based similarity measures from Chen et al. (Comput Graph Forum 22(3):223–232, 2003) are then used to calculate the similarity between two 3D objects. Retrieval experiments were performed on three datasets: the Heads dataset, the SHREC2008 dataset, and the Princeton dataset. Experimental results show that the retrieval results using the salient views are comparable to the existing light field descriptor method (Chen et al. in Comput Graph Forum 22(3):223–232, 2003), and our method achieves a 15-fold speedup in the feature extraction computation time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Multimedia Information Retrieval Springer Journals

Loading next page...
 
/lp/springer-journals/3d-object-retrieval-using-salient-views-ZTWPliUesU
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer-Verlag London Limited
Subject
Computer Science; Multimedia Information Systems; Information Storage and Retrieval; Information Systems Applications (incl. Internet); Data Mining and Knowledge Discovery; Image Processing and Computer Vision; Computer Science, general
ISSN
2192-6611
eISSN
2192-662X
DOI
10.1007/s13735-012-0015-3
Publisher site
See Article on Publisher Site

Abstract

This paper presents a method for selecting salient 2D views to describe 3D objects for the purpose of retrieval. The views are obtained by first identifying salient points via a learning approach that uses shape characteristics of the 3D points (Atmosukarto and Shapiro in International workshop on structural, syntactic, and statistical pattern recognition, 2008; Atmosukarto and Shapiro in ACM multimedia information retrieval, 2008). The salient views are selected by choosing views with multiple salient points on the silhouette of the object. Silhouette-based similarity measures from Chen et al. (Comput Graph Forum 22(3):223–232, 2003) are then used to calculate the similarity between two 3D objects. Retrieval experiments were performed on three datasets: the Heads dataset, the SHREC2008 dataset, and the Princeton dataset. Experimental results show that the retrieval results using the salient views are comparable to the existing light field descriptor method (Chen et al. in Comput Graph Forum 22(3):223–232, 2003), and our method achieves a 15-fold speedup in the feature extraction computation time.

Journal

International Journal of Multimedia Information RetrievalSpringer Journals

Published: Jul 8, 2012

References