Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

1H,13C and 15N chemical shift assignments of the SUD domains of SARS-CoV-2 non-structural protein 3c: “The SUD-M and SUD-C domains”

1H,13C and 15N chemical shift assignments of the SUD domains of SARS-CoV-2 non-structural protein... SARS-CoV-2 RNA, nsP3c (non-structural Protein3c) spans the sequence of the so-called SARS Unique Domains (SUDs), first observed in SARS-CoV. Although the function of this viral protein is not fully elucidated, it is believed that it is crucial for the formation of the replication/transcription viral complex (RTC) and of the interaction of various viral “components” with the host cell; thus, it is essential for the entire viral life cycle. The first two SUDs, the so-called SUD-N (the N-terminal domain) and SUD-M (domain following SUD-N) domains, exhibit topological and conformational features that resemble the nsP3b macro (or “X”) domain. Indeed, they are all folded in a three-layer α/β/α sandwich structure, as revealed through crystallographic structural investigation of SARS-CoV SUDs, and they have been attributed to different substrate selectivity as they selectively bind to oligonucleotides. On the other hand, the C-terminal SUD (SUD-C) exhibit much lower sequence similarities compared to the SUD-N & SUD-M, as reported in previous crystallographic and NMR studies of SARS-CoV. In the absence of the 3D structures of SARS-CoV-2, we report herein the almost complete NMR backbone and side-chain resonance assignment (1H,13C,15N) of SARS-CoV-2 SUD-M and SUD-C proteins, and the NMR chemical shift-based prediction of their secondary structure elements. These NMR data will set the base for further understanding at the atomic-level conformational dynamics of these proteins and will allow the effective screening of a large number of small molecules as binders with potential biological impact on their function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomolecular NMR Assignments Springer Journals

1H,13C and 15N chemical shift assignments of the SUD domains of SARS-CoV-2 non-structural protein 3c: “The SUD-M and SUD-C domains”

Loading next page...
 
/lp/springer-journals/1h-13c-and-15n-chemical-shift-assignments-of-the-sud-domains-of-sars-HNLaX38JT1

References (24)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021
ISSN
1874-2718
eISSN
1874-270X
DOI
10.1007/s12104-020-10000-9
Publisher site
See Article on Publisher Site

Abstract

SARS-CoV-2 RNA, nsP3c (non-structural Protein3c) spans the sequence of the so-called SARS Unique Domains (SUDs), first observed in SARS-CoV. Although the function of this viral protein is not fully elucidated, it is believed that it is crucial for the formation of the replication/transcription viral complex (RTC) and of the interaction of various viral “components” with the host cell; thus, it is essential for the entire viral life cycle. The first two SUDs, the so-called SUD-N (the N-terminal domain) and SUD-M (domain following SUD-N) domains, exhibit topological and conformational features that resemble the nsP3b macro (or “X”) domain. Indeed, they are all folded in a three-layer α/β/α sandwich structure, as revealed through crystallographic structural investigation of SARS-CoV SUDs, and they have been attributed to different substrate selectivity as they selectively bind to oligonucleotides. On the other hand, the C-terminal SUD (SUD-C) exhibit much lower sequence similarities compared to the SUD-N & SUD-M, as reported in previous crystallographic and NMR studies of SARS-CoV. In the absence of the 3D structures of SARS-CoV-2, we report herein the almost complete NMR backbone and side-chain resonance assignment (1H,13C,15N) of SARS-CoV-2 SUD-M and SUD-C proteins, and the NMR chemical shift-based prediction of their secondary structure elements. These NMR data will set the base for further understanding at the atomic-level conformational dynamics of these proteins and will allow the effective screening of a large number of small molecules as binders with potential biological impact on their function.

Journal

Biomolecular NMR AssignmentsSpringer Journals

Published: Jan 9, 2021

There are no references for this article.