Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract. Brain tissue segmentation on magnetic resonance (MR) imaging is a difficult task because of significant intensity overlap between the tissue classes. We present a new knowledge-driven decision theory (KDT) approach that incorporates prior information of the relative extents of intensity overlap between tissue class pairs for volumetric MR tissue segmentation. The proposed approach better handles intensity overlap between tissues without explicitly employing methods for removal of MR image corruptions (such as bias field). Adaptive tissue class priors are employed that combine probabilistic atlas maps with spatial contextual information obtained from Markov random fields to guide tissue segmentation. The energy function is minimized using a variational level-set-based framework, which has shown great promise for MR image analysis. We evaluate the proposed method on two well-established real MR datasets with expert ground-truth segmentations and compare our approach against existing segmentation methods. KDT has low-computational complexity and shows better segmentation performance than other segmentation methods evaluated using these MR datasets.
Journal of Medical Imaging – SPIE
Published: Oct 1, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.