Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Spectral propagation-based x-ray phase-contrast computed tomography

Spectral propagation-based x-ray phase-contrast computed tomography Abstract.Purpose: Propagation-based x-ray imaging (PBI) is a phase-contrast technique that is employed in high-resolution imaging by introducing some distance between sample and detector. PBI causes characteristic intensity fringes that have to be processed with appropriate phase-retrieval algorithms, which has historically been a difficult task for objects composed of several different materials. Spectral x-ray imaging has been introduced to PBI to overcome this issue and to potentially utilize the spectral nature of the data for material-specific imaging. We aim to explore the potential of spectral PBI in three-dimensional computed tomography (CT) imaging in this work.Approach: We demonstrate phase-retrieval for experimental high-resolution spectral propagation-based CT data of a simple two-component sample, as well as a multimaterial capacitor test sample. Phase-retrieval was performed using an algorithm based on the Alvarez–Macovski model. Virtual monochromatic (VMI) and effective atomic number images were calculated after phase-retrieval.Results: Phase-retrieval results from the spectral data set show a distinct gray-level for each material with no residual phase-contrast fringes. Several representations of the phase-retrieved data are provided. The VMI is used to display an attenuation-equivalent image at a chosen display energy of 80 keV, to provide good separation of materials with minimal noise. The effective atomic number image shows the material composition of the sample.Conclusions: Spectral photon-counting detector technology has already been shown to be compatible with spectral PBI, and there is a foreseeable need for robust phase-retrieval in high-resolution, spectral x-ray CT in the future. Our results demonstrate the feasibility of phase-retrieval for spectral PBI CT. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Imaging SPIE

Spectral propagation-based x-ray phase-contrast computed tomography

Loading next page...
 
/lp/spie/spectral-propagation-based-x-ray-phase-contrast-computed-tomography-Jf4A0uH0cb

References (34)

Publisher
SPIE
Copyright
© 2022 Society of Photo-Optical Instrumentation Engineers (SPIE)
ISSN
2329-4302
eISSN
2329-4310
DOI
10.1117/1.jmi.9.3.031506
Publisher site
See Article on Publisher Site

Abstract

Abstract.Purpose: Propagation-based x-ray imaging (PBI) is a phase-contrast technique that is employed in high-resolution imaging by introducing some distance between sample and detector. PBI causes characteristic intensity fringes that have to be processed with appropriate phase-retrieval algorithms, which has historically been a difficult task for objects composed of several different materials. Spectral x-ray imaging has been introduced to PBI to overcome this issue and to potentially utilize the spectral nature of the data for material-specific imaging. We aim to explore the potential of spectral PBI in three-dimensional computed tomography (CT) imaging in this work.Approach: We demonstrate phase-retrieval for experimental high-resolution spectral propagation-based CT data of a simple two-component sample, as well as a multimaterial capacitor test sample. Phase-retrieval was performed using an algorithm based on the Alvarez–Macovski model. Virtual monochromatic (VMI) and effective atomic number images were calculated after phase-retrieval.Results: Phase-retrieval results from the spectral data set show a distinct gray-level for each material with no residual phase-contrast fringes. Several representations of the phase-retrieved data are provided. The VMI is used to display an attenuation-equivalent image at a chosen display energy of 80 keV, to provide good separation of materials with minimal noise. The effective atomic number image shows the material composition of the sample.Conclusions: Spectral photon-counting detector technology has already been shown to be compatible with spectral PBI, and there is a foreseeable need for robust phase-retrieval in high-resolution, spectral x-ray CT in the future. Our results demonstrate the feasibility of phase-retrieval for spectral PBI CT.

Journal

Journal of Medical ImagingSPIE

Published: May 1, 2022

Keywords: x-ray phase contrast; computed tomography; spectral imaging; phase retrieval; electron density; effective atomic number

There are no references for this article.