Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Silicon photon-counting detector for full-field CT using an ASIC with adjustable shaping time

Silicon photon-counting detector for full-field CT using an ASIC with adjustable shaping time Abstract.Purpose: Photon-counting silicon strip detectors are attracting interest for use in next-generation CT scanners. For CT detectors in a clinical environment, it is desirable to have a low power consumption. However, decreasing the power consumption leads to higher noise. This is particularly detrimental for silicon detectors, which require a low noise floor to obtain a good dose efficiency. The increase in noise can be mitigated using a longer shaping time in the readout electronics. This also results in longer pulses, which requires an increased deadtime, thereby degrading the count-rate performance. However, as the photon flux varies greatly during a typical CT scan, not all projection lines require a high count-rate capability. We propose adjusting the shaping time to counteract the increased noise that results from decreasing the power consumption.Approach: To show the potential of increasing the shaping time to decrease the noise level, synchrotron measurements were performed using a detector prototype with two shaping time settings. From the measurements, a simulation model was developed and used to predict the performance of a future channel design.Results: Based on the synchrotron measurements, we show that increasing the shaping time from 28.1 to 39.4 ns decreases the noise and increases the signal-to-noise ratio with 6.5% at low count rates. With the developed simulation model, we predict that a 50% decrease in power can be attained in a proposed future detector design by increasing the shaping time with a factor of 1.875.Conclusion: Our results show that the shaping time can be an important tool to adapt the pulse length and noise level to the photon flux and thereby optimize the dose efficiency of photon-counting silicon detectors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Imaging SPIE

Silicon photon-counting detector for full-field CT using an ASIC with adjustable shaping time

Loading next page...
 
/lp/spie/silicon-photon-counting-detector-for-full-field-ct-using-an-asic-with-g6HYNNZjs8

References (56)

Publisher
SPIE
Copyright
© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
ISSN
2329-4302
eISSN
2329-4310
DOI
10.1117/1.JMI.7.5.053503
Publisher site
See Article on Publisher Site

Abstract

Abstract.Purpose: Photon-counting silicon strip detectors are attracting interest for use in next-generation CT scanners. For CT detectors in a clinical environment, it is desirable to have a low power consumption. However, decreasing the power consumption leads to higher noise. This is particularly detrimental for silicon detectors, which require a low noise floor to obtain a good dose efficiency. The increase in noise can be mitigated using a longer shaping time in the readout electronics. This also results in longer pulses, which requires an increased deadtime, thereby degrading the count-rate performance. However, as the photon flux varies greatly during a typical CT scan, not all projection lines require a high count-rate capability. We propose adjusting the shaping time to counteract the increased noise that results from decreasing the power consumption.Approach: To show the potential of increasing the shaping time to decrease the noise level, synchrotron measurements were performed using a detector prototype with two shaping time settings. From the measurements, a simulation model was developed and used to predict the performance of a future channel design.Results: Based on the synchrotron measurements, we show that increasing the shaping time from 28.1 to 39.4 ns decreases the noise and increases the signal-to-noise ratio with 6.5% at low count rates. With the developed simulation model, we predict that a 50% decrease in power can be attained in a proposed future detector design by increasing the shaping time with a factor of 1.875.Conclusion: Our results show that the shaping time can be an important tool to adapt the pulse length and noise level to the photon flux and thereby optimize the dose efficiency of photon-counting silicon detectors.

Journal

Journal of Medical ImagingSPIE

Published: Sep 1, 2020

Keywords: silicon photon-counting detector; dose efficiency; photon-counting detector; shaping time; application-specific integrated circuit

There are no references for this article.