Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Segmentation of retinal blood vessels based on feature-oriented dictionary learning and sparse coding using ensemble classification approach

Segmentation of retinal blood vessels based on feature-oriented dictionary learning and sparse... Abstract.Accurate segmentation of the blood vessels from a retinal image plays a significant role in the prudent examination of the vessels. A supervised blood vessel segmentation technique to extract blood vessels from a retinal image is proposed. The uniqueness of the work lies in the implementation of feature-oriented dictionary learning and sparse coding for the accurate classification of the pixels in an image. First, the image is split into patches and for each patch, Gabor features are extracted at multiple scales and orientations to create a set of feature vectors (this is done for the whole training set). Then, an overcomplete feature-oriented dictionary is trained from the extracted Gabor features (selected on the basis of standard deviation) using the generalized K-means for singular value decomposition dictionary learning technique. Sparse representations are subsequently calculated for the corresponding features from the dictionary. The combination of feature vectors and sparse representations constitutes the final feature vector. This feature vector is then fed into the ensemble classifier for the classification of pixels into either blood vessel pixels or nonblood vessel pixels. The method is evaluated on publicly available DRIVE and STARE datasets, as they contain ground truth images precisely marked by experts. The results obtained on both of the datasets show that the proposed technique outperforms most of the state-of-the-art techniques reported in the literature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Imaging SPIE

Segmentation of retinal blood vessels based on feature-oriented dictionary learning and sparse coding using ensemble classification approach

Loading next page...
 
/lp/spie/segmentation-of-retinal-blood-vessels-based-on-feature-oriented-MN6aKtyjdd
Publisher
SPIE
Copyright
© 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
ISSN
2329-4302
eISSN
2329-4310
DOI
10.1117/1.JMI.6.4.044006
Publisher site
See Article on Publisher Site

Abstract

Abstract.Accurate segmentation of the blood vessels from a retinal image plays a significant role in the prudent examination of the vessels. A supervised blood vessel segmentation technique to extract blood vessels from a retinal image is proposed. The uniqueness of the work lies in the implementation of feature-oriented dictionary learning and sparse coding for the accurate classification of the pixels in an image. First, the image is split into patches and for each patch, Gabor features are extracted at multiple scales and orientations to create a set of feature vectors (this is done for the whole training set). Then, an overcomplete feature-oriented dictionary is trained from the extracted Gabor features (selected on the basis of standard deviation) using the generalized K-means for singular value decomposition dictionary learning technique. Sparse representations are subsequently calculated for the corresponding features from the dictionary. The combination of feature vectors and sparse representations constitutes the final feature vector. This feature vector is then fed into the ensemble classifier for the classification of pixels into either blood vessel pixels or nonblood vessel pixels. The method is evaluated on publicly available DRIVE and STARE datasets, as they contain ground truth images precisely marked by experts. The results obtained on both of the datasets show that the proposed technique outperforms most of the state-of-the-art techniques reported in the literature.

Journal

Journal of Medical ImagingSPIE

Published: Oct 1, 2019

Keywords: retinal blood vessel segmentation; feature-oriented dictionary learning; sparse coding; Gabor features

There are no references for this article.