Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract. We compare several approaches to estimation of Hotelling observer (HO) performance in x-ray computed tomography (CT). We consider the case where the signal of interest is small so that the reconstructed image can be restricted to a small region of interest (ROI) surrounding the signal. This reduces the dimensionality of the image covariance matrix so that direct computation of HO metrics within the ROI is feasible. We propose that this approach is directly applicable to systems optimization in CT; however, many alternative approaches exist, which make computation of HO performance tractable through a range of approximations, assumptions, or estimation strategies. Here, we compare several of these methods, including the use of Laguerre-Gauss channels, discrete Fourier domain computation of the HO (which assumes noise stationarity), and two approaches to HO estimation through samples of noisy images. Since our method computes HO performance exactly within an ROI, this allows us to investigate the validity of the assumptions inherent in various common approaches to HO estimation, such as the stationarity assumption in the case of the discrete Fourier transform domain method.
Journal of Medical Imaging – SPIE
Published: Oct 1, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.