Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Preclinical evaluation of a prototype freehand drill video guidance system for orthopedic surgery

Preclinical evaluation of a prototype freehand drill video guidance system for orthopedic surgery Abstract.Purpose: Internal fixation of pelvic fractures is a challenging task requiring the placement of instrumentation within complex three-dimensional bone corridors, typically guided by fluoroscopy. We report a system for two- and three-dimensional guidance using a drill-mounted video camera and fiducial markers with evaluation in first preclinical studies.Approach: The system uses a camera affixed to a surgical drill and multimodality (optical and radio-opaque) markers for real-time trajectory visualization in fluoroscopy and/or CT. Improvements to a previously reported prototype include hardware components (mount, camera, and fiducials) and software (including a system for detecting marker perturbation) to address practical requirements necessary for translation to clinical studies. Phantom and cadaver experiments were performed to quantify the accuracy of video-fluoroscopy and video-CT registration, the ability to detect marker perturbation, and the conformance in placing guidewires along realistic pelvic trajectories. The performance was evaluated in terms of geometric accuracy and conformance within bone corridors.Results: The studies demonstrated successful guidewire delivery in a cadaver, with a median entry point error of 1.00 mm (1.56 mm IQR) and median angular error of 1.94 deg (1.23 deg IQR). Such accuracy was sufficient to guide K-wire placement through five of the six trajectories investigated with a strong level of conformance within bone corridors. The sixth case demonstrated a cortical breach due to extrema in the registration error. The system was able to detect marker perturbations and alert the user to potential registration issues. Feasible workflows were identified for orthopedic-trauma scenarios involving emergent cases (with no preoperative imaging) or cases with preoperative CT.Conclusions: A prototype system for guidewire placement was developed providing guidance that is potentially compatible with orthopedic-trauma workflow. First preclinical (cadaver) studies demonstrated accurate guidance of K-wire placement in pelvic bone corridors and the ability to automatically detect perturbations that degrade registration accuracy. The preclinical prototype demonstrated performance and utility supporting translation to clinical studies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Imaging SPIE

Preclinical evaluation of a prototype freehand drill video guidance system for orthopedic surgery

Loading next page...
 
/lp/spie/preclinical-evaluation-of-a-prototype-freehand-drill-video-guidance-erv0ZGunz1
Publisher
SPIE
Copyright
© 2022 Society of Photo-Optical Instrumentation Engineers (SPIE)
ISSN
2329-4302
eISSN
2329-4310
DOI
10.1117/1.jmi.9.4.045004
Publisher site
See Article on Publisher Site

Abstract

Abstract.Purpose: Internal fixation of pelvic fractures is a challenging task requiring the placement of instrumentation within complex three-dimensional bone corridors, typically guided by fluoroscopy. We report a system for two- and three-dimensional guidance using a drill-mounted video camera and fiducial markers with evaluation in first preclinical studies.Approach: The system uses a camera affixed to a surgical drill and multimodality (optical and radio-opaque) markers for real-time trajectory visualization in fluoroscopy and/or CT. Improvements to a previously reported prototype include hardware components (mount, camera, and fiducials) and software (including a system for detecting marker perturbation) to address practical requirements necessary for translation to clinical studies. Phantom and cadaver experiments were performed to quantify the accuracy of video-fluoroscopy and video-CT registration, the ability to detect marker perturbation, and the conformance in placing guidewires along realistic pelvic trajectories. The performance was evaluated in terms of geometric accuracy and conformance within bone corridors.Results: The studies demonstrated successful guidewire delivery in a cadaver, with a median entry point error of 1.00 mm (1.56 mm IQR) and median angular error of 1.94 deg (1.23 deg IQR). Such accuracy was sufficient to guide K-wire placement through five of the six trajectories investigated with a strong level of conformance within bone corridors. The sixth case demonstrated a cortical breach due to extrema in the registration error. The system was able to detect marker perturbations and alert the user to potential registration issues. Feasible workflows were identified for orthopedic-trauma scenarios involving emergent cases (with no preoperative imaging) or cases with preoperative CT.Conclusions: A prototype system for guidewire placement was developed providing guidance that is potentially compatible with orthopedic-trauma workflow. First preclinical (cadaver) studies demonstrated accurate guidance of K-wire placement in pelvic bone corridors and the ability to automatically detect perturbations that degrade registration accuracy. The preclinical prototype demonstrated performance and utility supporting translation to clinical studies.

Journal

Journal of Medical ImagingSPIE

Published: Jul 1, 2022

Keywords: surgical navigation; image-guided surgery; guidewire insertion; internal fixation; pelvic trauma

References