Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Description and classification of normal and pathological aging processes based on brain magnetic resonance imaging morphology measures

Description and classification of normal and pathological aging processes based on brain magnetic... Abstract. We present a discrete compactness (DC) index, together with a classification scheme, based both on the size and shape features extracted from brain volumes, to determine different aging stages: healthy controls (HC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD). A set of 30 brain magnetic resonance imaging (MRI) volumes for each group was segmented and two indices were measured for several structures: three-dimensional DC and normalized volumes (NVs). The discrimination power of these indices was determined by means of the area under the curve (AUC) of the receiver operating characteristic, where the proposed compactness index showed an average AUC of 0.7 for HC versus MCI comparison, 0.9 for HC versus AD separation, and 0.75 for MCI versus AD groups. In all cases, this index outperformed the discrimination capability of the NV. Using selected features from the set of DC and NV measures, three support vector machines were optimized and validated for the pairwise separation of the three classes. Our analysis shows classification rates of up to 98.3% between HC and AD, 85% between HC and MCI, and 93.3% for MCI and AD separation. These results outperform those reported in the literature and demonstrate the viability of the proposed morphological indices to classify different aging stages. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Medical Imaging SPIE

Description and classification of normal and pathological aging processes based on brain magnetic resonance imaging morphology measures

Loading next page...
 
/lp/spie/description-and-classification-of-normal-and-pathological-aging-VHVSxvmI0F
Publisher
SPIE
Copyright
© The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Subject
Image Processing; Paper
ISSN
2329-4302
eISSN
2329-4310
DOI
10.1117/1.JMI.1.3.034002
pmid
26158061
Publisher site
See Article on Publisher Site

Abstract

Abstract. We present a discrete compactness (DC) index, together with a classification scheme, based both on the size and shape features extracted from brain volumes, to determine different aging stages: healthy controls (HC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD). A set of 30 brain magnetic resonance imaging (MRI) volumes for each group was segmented and two indices were measured for several structures: three-dimensional DC and normalized volumes (NVs). The discrimination power of these indices was determined by means of the area under the curve (AUC) of the receiver operating characteristic, where the proposed compactness index showed an average AUC of 0.7 for HC versus MCI comparison, 0.9 for HC versus AD separation, and 0.75 for MCI versus AD groups. In all cases, this index outperformed the discrimination capability of the NV. Using selected features from the set of DC and NV measures, three support vector machines were optimized and validated for the pairwise separation of the three classes. Our analysis shows classification rates of up to 98.3% between HC and AD, 85% between HC and MCI, and 93.3% for MCI and AD separation. These results outperform those reported in the literature and demonstrate the viability of the proposed morphological indices to classify different aging stages.

Journal

Journal of Medical ImagingSPIE

Published: Oct 1, 2014

There are no references for this article.