Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract. We present a discrete compactness (DC) index, together with a classification scheme, based both on the size and shape features extracted from brain volumes, to determine different aging stages: healthy controls (HC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD). A set of 30 brain magnetic resonance imaging (MRI) volumes for each group was segmented and two indices were measured for several structures: three-dimensional DC and normalized volumes (NVs). The discrimination power of these indices was determined by means of the area under the curve (AUC) of the receiver operating characteristic, where the proposed compactness index showed an average AUC of 0.7 for HC versus MCI comparison, 0.9 for HC versus AD separation, and 0.75 for MCI versus AD groups. In all cases, this index outperformed the discrimination capability of the NV. Using selected features from the set of DC and NV measures, three support vector machines were optimized and validated for the pairwise separation of the three classes. Our analysis shows classification rates of up to 98.3% between HC and AD, 85% between HC and MCI, and 93.3% for MCI and AD separation. These results outperform those reported in the literature and demonstrate the viability of the proposed morphological indices to classify different aging stages.
Journal of Medical Imaging – SPIE
Published: Oct 1, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.