Access the full text.
Sign up today, get DeepDyve free for 14 days.
(2000)
Microsoft Corporation
A. Katouzian, E. Angelini, S. Carlier, J. Suri, Nassir Navab, A. Laine (2012)
A State-of-the-Art Review on Segmentation Algorithms in Intravascular Ultrasound (IVUS) ImagesIEEE Transactions on Information Technology in Biomedicine, 16
L. Bargsten, K. Riedl, T. Wissel, F. Brunner, K. Schaefers, J. Sprenger, M. Grass, M. Seiffert, S. Blankenberg, A. Schlaefer (2021)
Tailored methods for segmentation of intravascular ultrasound images via convolutional neural networks, 11602
Andra-Iza Iuga, H. Carolus, A. Höink, T. Brosch, T. Klinder, D. Maintz, T. Persigehl, B. Baessler, M. Püsken (2021)
Automated detection and segmentation of thoracic lymph nodes from CT using 3D foveal fully convolutional neural networksBMC Medical Imaging, 21
J. Dijkstra, G. Koning, J. Tuinenburg, P. Oemrawsingh, J. Reiber (2003)
Automatic stent border detection in intraVascular ultraSound images
O. Ronneberger, P. Fischer, T. Brox (2015)
U-Net: Convolutional Networks for Biomedical Image SegmentationArXiv, abs/1505.04597
S. Balocco, C. Gatta, F. Ciompi, A. Wahle, P. Radeva, S. Carlier, Gözde Ünal, E. Sanidas, J. Mauri, X. Carrillo, T. Kovárník, Ching-Wei Wang, Hsiang-Chou Chen, T. Exarchos, D. Fotiadis, F. Destrempes, G. Cloutier, O. Pujol, M. Alberti, E. Mendizabal-Ruiz, M. Rivera, T. Aksoy, R. Downe, I. Kakadiaris
Computerized Medical Imaging and Graphics Standardized evaluation methodology and reference database for evaluating IVUS image segmentation
(2010)
method and quantitative validation,” Med
M. Sousa‐Uva, F. Neumann, A. Ahlsson, F. Alfonso, A. Banning, U. Benedetto, R. Byrne, J. Collet, V. Falk, S. Head, P. Jüni, A. Kastrati, A. Koller, S. Kristensen, J. Niebauer, D. Richter, P. Seferovic, D. Sibbing, G. Stefanini, S. Windecker, Rashmi Yadav, M. Zembala (2018)
2018 ESC/EACTS Guidelines on myocardial revascularization.European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery, 55 1
D. Trabattoni, A. Bartorelli (2010)
IVUS in bifurcation stenting: what have we learned?EuroIntervention : journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 6 Suppl J
(2006)
American College of Cardiology/American Heart Association task force on practice guidelines, 47
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, N. Gimelshein, L. Antiga, Alban Desmaison, Andreas Köpf, E. Yang, Zach DeVito, Martin Raison, A. Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, Soumith Chintala (2019)
PyTorch: An Imperative Style, High-Performance Deep Learning Library
C. Gatta, S. Balocco, F. Ciompi, R. Hemetsberger, O. Rodriguez-Leor, P. Radeva (2010)
Real-Time Gating of IVUS Sequences Based on Motion Blur Analysis: Method and Quantitative ValidationMedical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention, 13 Pt 2
Junjie Zhang, Xiaofei Gao, J. Kan, Z. Ge, Leng Han, Shu Lu, N. Tian, Song Lin, Qinghua Lu, Xueming Wu, Qihua Li, Zhi‐zhong Liu, Yan Chen, X. Qian, Juan Wang, Dayang Chai, Chonghao Chen, Xiaolong Li, B. Gogas, Tao Pan, Shou-jie Shan, F. Ye, Shao‐Liang Chen (2018)
Intravascular Ultrasound Versus Angiography-Guided Drug-Eluting Stent Implantation: The ULTIMATE Trial.Journal of the American College of Cardiology, 72 24
Diederik Kingma, Jimmy Ba (2014)
Adam: A Method for Stochastic OptimizationCoRR, abs/1412.6980
T. Nishi, R. Yamashita, S. Imura, K. Tateishi, H. Kitahara, Yoshio Kobayashi, P. Yock, P. Fitzgerald, Y. Honda (2021)
Deep learning-based intravascular ultrasound segmentation for the assessment of coronary artery disease.International journal of cardiology
Zhao Wang, Michael Jenkins, G. Linderman, H. Bezerra, Y. Fujino, M. Costa, D. Wilson, A. Rollins (2015)
3-D Stent Detection in Intravascular OCT Using a Bayesian Network and Graph SearchIEEE Transactions on Medical Imaging, 34
Liang-Chieh Chen, G. Papandreou, Florian Schroff, Hartwig Adam (2017)
Rethinking Atrous Convolution for Semantic Image SegmentationArXiv, abs/1706.05587
S. Tsantis, G. Kagadis, K. Katsanos, D. Karnabatidis, G. Bourantas, G. Nikiforidis (2011)
Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography.Medical physics, 39 1
C. Sudre, Wenqi Li, Tom Vercauteren, S. Ourselin, M. Cardoso (2017)
Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentationsDeep learning in medical image analysis and multimodal learning for clinical decision support : Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, held in conjunction with MICCAI 2017 Quebec City, QC,..., 2017
S. Balocco, F. Ciompi, J. Rigla, X. Carrillo, J. Mauri, P. Radeva (2020)
Computer-Aided Detection of Intracoronary Stent Location and Extension in Intravascular Ultrasound Sequences
(2017)
Microsoft cognitive toolkit, release 2.3
L. Bargsten, A. Schlaefer (2020)
SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processingInternational Journal of Computer Assisted Radiology and Surgery, 15
S. Balocco (2014)
Standardized evaluation methodology and reference database for evaluating IVUS image segmentation, 38
F. Ciompi, Rui Hua, S. Balocco, M. Alberti, O. Pujol, C. Caus, J. Mauri, P. Radeva (2013)
Learning to Detect Stent Struts in Intravascular Ultrasound
L. Fleisher, K. Fleischmann, A. Auerbach, S. Barnason, J. Beckman, B. Bozkurt, V. Dávila-Román, M. Gerhard-Herman, T. Holly, Garvan Kane, J. Marine, M. Nelson, Crystal Spencer, Annemarie Thompson, H. Ting, B. Uretsky, D. Wijeysundera (2014)
2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.Circulation, 130 24
I. Choi, Sungmin Lim, E. Choo, B. Hwang, Chan Kim, Mahn-Won Park, Jongmin Lee, C. Park, Hee-Yeol Kim, K. Yoo, D. Jeon, H. Youn, W. Chung, Min Kim, M. Jeong, Y. Ahn, Kiyuk Chang (2021)
Impact of Intravascular Ultrasound on Long-Term Clinical Outcomes in Patients With Acute Myocardial Infarction.JACC. Cardiovascular interventions
F. Ciompi, S. Balocco, J. Rigla, X. Carrillo, J. Mauri, P. Radeva (2016)
Computer-aided detection of intracoronary stent in intravascular ultrasound sequences.Medical physics, 43 10
(2021)
Ultimate investigators. 3-Year outcomes of the ultimate trial comparing intravascular ultrasound versus angiography-guided drug-eluting stent implantation,
S. Balocco, F. Ciompi, J. Rigla, X. Carrillo, J. Mauri, P. Radeva (2018)
Assessment of intracoronary stent location and extension in intravascular ultrasound sequencesMedical Physics, 46
Vijay Badrinarayanan, Alex Kendall, R. Cipolla (2015)
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image SegmentationIEEE Transactions on Pattern Analysis and Machine Intelligence, 39
L. Bargsten, T. Wissel, K. Schaefers, M. Grass, S. Blankenberg, M. Seiffert, A. Schlaefer (2021)
Attention via Scattering Transforms for Segmentation of Small Intravascular Ultrasound Data Sets
Hyeonwoo Noh, Seunghoon Hong, Bohyung Han (2015)
Learning Deconvolution Network for Semantic Segmentation2015 IEEE International Conference on Computer Vision (ICCV)
Y. Gal, Riashat Islam, Zoubin Ghahramani (2017)
Deep Bayesian Active Learning with Image DataArXiv, abs/1703.02910
(2010)
what have we learned?” EuroIntervention 6(Suppl
(2019)
Mortality from ischemic heart disease, analysis of data from the world health organization and coronary artery disease risk factors from NCD risk factor collaboration,
(2018)
the ultimate trial,” J
Kaiming He, X. Zhang, Shaoqing Ren, Jian Sun (2015)
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification2015 IEEE International Conference on Computer Vision (ICCV)
F. Sawaya, T. Lefévre, B. Chevalier, P. Garot, T. Hovasse, M. Morice, Tanveer Rab, Y. Louvard (2016)
Contemporary Approach to Coronary Bifurcation Lesion Treatment.JACC. Cardiovascular interventions, 9 18
Hong Lu, M. Gargesha, Zhao Wang, D. Chamié, G. Attizzani, T. Kanaya, Soumya Ray, M. Costa, A. Rollins, H. Bezerra, D. Wilson (2012)
Automatic stent detection in intravascular OCT images using bagged decision treesBiomedical Optics Express, 3
Shengnan Liu, T. Neleman, Eline Hartman, J. Ligthart, K. Witberg, A. Steen, J. Wentzel, J. Daemen, G. Soest (2020)
Automated Quantitative Assessment of Coronary Calcification Using Intravascular Ultrasound.Ultrasound in medicine & biology
H. Yoon, S. Hur (2012)
Optimization of Stent Deployment by Intravascular UltrasoundThe Korean Journal of Internal Medicine, 27
Abstract.Purpose: Implanting stents to re-open stenotic lesions during percutaneous coronary interventions is considered a standard treatment for acute or chronic coronary syndrome. Intravascular ultrasound (IVUS) can be used to guide and assess the technical success of these interventions. Automatically segmenting stent struts in IVUS sequences improves workflow efficiency but is non-trivial due to a challenging image appearance entailing manifold ambiguities with other structures. Manual, ungated IVUS pullbacks constitute a challenge in this context. We propose a fully data-driven strategy to first longitudinally detect and subsequently segment stent struts in IVUS frames.Approach: A cascaded deep learning approach is presented. It first trains an encoder model to classify frames as “stent,” “no stent,” or “no use.” A segmentation model then delineates stent struts on a pixel level only in frames with a stent label. The first stage of the cascade acts as a gateway to reduce the risk for false positives in the second stage, the segmentation, which is trained on a smaller and difficult-to-annotate dataset. Training of the classification and segmentation model was based on 49,888 and 1826 frames of 74 sequences from 35 patients, respectively.Results: The longitudinal classification yielded Dice scores of 92.96%, 82.35%, and 94.03% for the classes stent, no stent, and no use, respectively. The segmentation achieved a Dice score of 65.1% on the stent ground truth (intra-observer performance: 75.5%) and 43.5% on all frames (including frames without stent, with guidewires, calcium, or without clinical use). The latter improved to 49.5% when gating the frames by the classification decision and further increased to 57.4% with a heuristic on the plausible stent strut area.Conclusions: A data-driven strategy for segmenting stents in ungated, manual pullbacks was presented—the most common and practical scenario in the time-critical clinical workflow. We demonstrated a mitigated risk for ambiguities and false positive predictions.
Journal of Medical Imaging – SPIE
Published: Mar 1, 2022
Keywords: intravascular ultrasound; coronary; stent; segmentation; detection
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.