Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
AbstractPurpose: Vascular changes are observed from initial stages of breast cancer, and monitoring of vessel structures helps in early detection of malignancies. In recent years, thermal imaging is being evaluated as a low-cost imaging modality to visualize and analyze early vascularity. However, visual inspection of thermal vascularity is challenging and subjective. Therefore, there is a need for automated techniques to assist physicians in visualization and interpretation of vascularity by marking the vessel structures and by providing quantified qualitative parameters that helps in malignancy classificationApproach: In the literature, there are very few approaches for vascular analysis and classification of breast thermal images using interpretable vascular features. One major challenge is the automated detection of breast vascularity due to diffused vessel boundaries. We first propose a deep learning-based semantic segmentation approach that generates heatmaps of vessel structures from two-dimensional breast thermal images for quantitative assessment of breast vascularity. Second, we extract interpretable vascular parameters and propose a classifier to predict likelihood of breast cancer purely from the extracted vascular parameters.Results: The results of the cancer classifier were validated using an independent clinical dataset consisting of 258 participants. The results were encouraging as the proposed approach segmented vessels well and gave a good classification performance with area under receiver operating characteristic curve of 0.85 with the proposed vascularity parameters.Conclusions: The detected vasculature and its associated high classification performance show the utility of the proposed approach in interpretation of breast vascularity.
Journal of Medical Imaging – SPIE
Published: Jul 1, 2022
Keywords: vessel segmentation; breast cancer; deep learning; malignancy classification; vessel features; thermal imaging
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.