Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Al2O3−BaTiO3 nanolaminates fabricated by multistationary target pulsed laser deposition with in situ ellipsometry

Al2O3−BaTiO3 nanolaminates fabricated by multistationary target pulsed laser deposition with in... Abstract.Layered oxide materials having alternating repeated layer thicknesses of 10 nm or less are difficult to make, especially with sharp interfaces. Nanostructured thin films having repeated layers of two different oxide materials were obtained by using pulsed laser deposition and two independent stationary targets consisting of Al2O3 and BaTiO3. Desired thicknesses were achieved by using a specific number of pulses from a 248-nm KrF excimer laser, at an energy of 450  mJ/pulse, a galvanometer mirror system, and a background pressure of oxygen. Trends in material properties were identified by systematically varying the number of pulses for multiple nanostructured thin films and comparing the resulting properties measured using in-situ spectroscopic ellipsometry and ex-situ capacitance measurements, including relative permittivity and loss. Four films were deposited with a goal of having 0.25-, 1-, 4-, and 10-nm thick layers, and each ∼220  nm thick. Ellipsometry data were modeled in situ to calculate thickness, n and k. A representative transmission electron microscopy measurement was also collected for the 10-nm sample with corresponding x-ray photoelectron spectroscopy and energy disperive x-ray spectroscopy. Ellipsometry and capacitance measurements were all performed on each of the samples, with one sample having calculated impedance greater than 30 GOhm at 0.001 Hz. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Nanophotonics SPIE

Al2O3−BaTiO3 nanolaminates fabricated by multistationary target pulsed laser deposition with in situ ellipsometry

Loading next page...
 
/lp/spie/al2o3-batio3-nanolaminates-fabricated-by-multistationary-target-pulsed-SVBjmfkvNQ

References (26)

Publisher
SPIE
ISSN
1934-2608
eISSN
1934-2608
DOI
10.1117/1.JNP.11.043506
Publisher site
See Article on Publisher Site

Abstract

Abstract.Layered oxide materials having alternating repeated layer thicknesses of 10 nm or less are difficult to make, especially with sharp interfaces. Nanostructured thin films having repeated layers of two different oxide materials were obtained by using pulsed laser deposition and two independent stationary targets consisting of Al2O3 and BaTiO3. Desired thicknesses were achieved by using a specific number of pulses from a 248-nm KrF excimer laser, at an energy of 450  mJ/pulse, a galvanometer mirror system, and a background pressure of oxygen. Trends in material properties were identified by systematically varying the number of pulses for multiple nanostructured thin films and comparing the resulting properties measured using in-situ spectroscopic ellipsometry and ex-situ capacitance measurements, including relative permittivity and loss. Four films were deposited with a goal of having 0.25-, 1-, 4-, and 10-nm thick layers, and each ∼220  nm thick. Ellipsometry data were modeled in situ to calculate thickness, n and k. A representative transmission electron microscopy measurement was also collected for the 10-nm sample with corresponding x-ray photoelectron spectroscopy and energy disperive x-ray spectroscopy. Ellipsometry and capacitance measurements were all performed on each of the samples, with one sample having calculated impedance greater than 30 GOhm at 0.001 Hz.

Journal

Journal of NanophotonicsSPIE

Published: Oct 1, 2017

There are no references for this article.