Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Adaptive driving beam system with MEMS optical scanner for reconfigurable vehicle headlight

Adaptive driving beam system with MEMS optical scanner for reconfigurable vehicle headlight Abstract.An adaptive driving beam (ADB) for vehicle headlights has been developed using a microelectromechanical systems optical scanner. A piezoelectric scanner is constructed using thin-film lead-zirconate-titanate oxide (PbZrTiO3, PZT) on a bonded silicon-on-insulator (SOI) wafer, respectively, processed by ion-milling and deep reactive ion etching. The PZT layer is laminated in metal films on the SOI layer to form a piezoelectric unimorph actuator, which are then arranged as a pair of twisting suspensions to drive the scanner at resonance. The same piezoelectric actuators are also arranged into another form of meandering suspensions to generate a large deflection angle. By the combination of these two mechanisms, two-dimensional optical scanner is constructed in a single chip. The scanner is used to draw a Lissajous pattern of a blue laser light on a phosphor material to create a structured light source that is projected forward for illumination. The lighting patterns and positions are electronically controlled and reconfigured depending upon the location of leading/oncoming vehicles, pedestrians, road signs, and the cruising speed of the vehicle. The paper discusses on the design of the piezoelectrically driven optical scanner along with the optomechanical performances. We also report on the road-test result of the developed on-vehicle ADB module. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Optical Microsystems SPIE

Adaptive driving beam system with MEMS optical scanner for reconfigurable vehicle headlight

Loading next page...
 
/lp/spie/adaptive-driving-beam-system-with-mems-optical-scanner-for-7B0wYPq7LJ

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
SPIE
Copyright
© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
ISSN
2708-5260
eISSN
2708-5260
DOI
10.1117/1.jom.1.1.014501
Publisher site
See Article on Publisher Site

Abstract

Abstract.An adaptive driving beam (ADB) for vehicle headlights has been developed using a microelectromechanical systems optical scanner. A piezoelectric scanner is constructed using thin-film lead-zirconate-titanate oxide (PbZrTiO3, PZT) on a bonded silicon-on-insulator (SOI) wafer, respectively, processed by ion-milling and deep reactive ion etching. The PZT layer is laminated in metal films on the SOI layer to form a piezoelectric unimorph actuator, which are then arranged as a pair of twisting suspensions to drive the scanner at resonance. The same piezoelectric actuators are also arranged into another form of meandering suspensions to generate a large deflection angle. By the combination of these two mechanisms, two-dimensional optical scanner is constructed in a single chip. The scanner is used to draw a Lissajous pattern of a blue laser light on a phosphor material to create a structured light source that is projected forward for illumination. The lighting patterns and positions are electronically controlled and reconfigured depending upon the location of leading/oncoming vehicles, pedestrians, road signs, and the cruising speed of the vehicle. The paper discusses on the design of the piezoelectrically driven optical scanner along with the optomechanical performances. We also report on the road-test result of the developed on-vehicle ADB module.

Journal

Journal of Optical MicrosystemsSPIE

Published: Jan 1, 2021

Keywords: microelectromechanical systems; scanner; piezoelectric; lead-zirconate-titanate; headlight; vehicle

References