Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Inhibition of GP130/STAT3 and EMT by combined bazedoxifene and paclitaxel treatment in ovarian cancer

Inhibition of GP130/STAT3 and EMT by combined bazedoxifene and paclitaxel treatment in ovarian... The interleukin 6 (IL‑6)/glycoprotein 130 (GP130)/signal transducer and activator of transcription 3 (STAT3) signalling pathway, with GP130 as an intermediate membrane receptor, is involved in the survival, metastasis, and resistance of ovarian cancer. Bazedoxifene, an FDA‑approved drug, is an inhibitor of GP130 and a selective estrogen modulator (SERM). We studied the mechanism of the combination therapy of bazedoxifene and paclitaxel in inhibiting the IL‑6‑mediated GP130/STAT3 signaling pathway in ovarian cancer. Surface plasmon resonance (SPR) was used to assess the binding of bazedoxifene to GP130. Migration, invasion, and apoptosis of ovarian cancer cells were assessed using bazedoxifene and paclitaxel. In addition, we determined the effects of bazedoxifene and paclitaxel alone or in combination on the GP130/STAT3 pathway and epithelial‑mesenchymal transition (EMT). The results revealed that the combination of bazedoxifene and paclitaxel suppressed cell viability, migration, and invasion in the ovarian cancer cells. In addition, the combination treatment increased apoptosis. Furthermore, bazedoxifene combined with paclitaxel inhibited the growth of ovarian cancer cells in a xenograft tumour model. This combination reduced STAT3 phosphorylation and suppressed gene expression and EMT. In conclusion, inhibition of GP130/STAT3 signalling and EMT via a combination of bazedoxifene and paclitaxel could be used as a therapeutic strategy by which to overcome ovarian cancer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Oncology Reports Spandidos Publications

Inhibition of GP130/STAT3 and EMT by combined bazedoxifene and paclitaxel treatment in ovarian cancer

Oncology Reports , Volume 47 (3): 14 – Mar 10, 2022

Loading next page...
 
/lp/spandidos-publications/inhibition-of-gp130-stat3-and-emt-by-combined-bazedoxifene-and-P7D0O93hc3

References (39)

Publisher
Spandidos Publications
Copyright
Copyright © 2022 Spandidos Publications
ISSN
1021-335X
DOI
10.3892/or.2022.8263

Abstract

The interleukin 6 (IL‑6)/glycoprotein 130 (GP130)/signal transducer and activator of transcription 3 (STAT3) signalling pathway, with GP130 as an intermediate membrane receptor, is involved in the survival, metastasis, and resistance of ovarian cancer. Bazedoxifene, an FDA‑approved drug, is an inhibitor of GP130 and a selective estrogen modulator (SERM). We studied the mechanism of the combination therapy of bazedoxifene and paclitaxel in inhibiting the IL‑6‑mediated GP130/STAT3 signaling pathway in ovarian cancer. Surface plasmon resonance (SPR) was used to assess the binding of bazedoxifene to GP130. Migration, invasion, and apoptosis of ovarian cancer cells were assessed using bazedoxifene and paclitaxel. In addition, we determined the effects of bazedoxifene and paclitaxel alone or in combination on the GP130/STAT3 pathway and epithelial‑mesenchymal transition (EMT). The results revealed that the combination of bazedoxifene and paclitaxel suppressed cell viability, migration, and invasion in the ovarian cancer cells. In addition, the combination treatment increased apoptosis. Furthermore, bazedoxifene combined with paclitaxel inhibited the growth of ovarian cancer cells in a xenograft tumour model. This combination reduced STAT3 phosphorylation and suppressed gene expression and EMT. In conclusion, inhibition of GP130/STAT3 signalling and EMT via a combination of bazedoxifene and paclitaxel could be used as a therapeutic strategy by which to overcome ovarian cancer.

Journal

Oncology ReportsSpandidos Publications

Published: Mar 10, 2022

There are no references for this article.