Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

New Regression Model to Estimate Global Solar Radiation Using Artificial Neural Network

New Regression Model to Estimate Global Solar Radiation Using Artificial Neural Network The main objective of the present study was to develop a new model for the solar radiation estimation in hilly areas of North India for the determination of constants ‘a’ and ‘b’ by taking only latitude and altitude of the place into consideration. In this study, new model was developed based on Angstrom-Prescott Model to estimate the monthly average daily global solar radiation only using sunshine duration data. The monthly average global solar radiation data of four different locations in North India was analyzed with the neural fitting tool (nftool) of neural network of MATLAB Version 7.11.0.584 (R2010b) with 32-bit (win 32). The neural network model was used with 10 hidden neurons. Eight months data was used to train the neural network. Two months data was used for the validation purpose and the remaining two months for the testing purpose. The new developed model estimated the values of ‘a’ which range from 0.209 to 0.222 and values of ‘b’ ranging from 0.253 to 0.407. The values of maximum percentage error (MPE) and mean bias error (MBE) were in good agreement with the actual values. Artificial neural network application showed that data was best fitted for the regression coefficient of 0.99558 with best validation performance of 0.85906 for Solan. This will help to advance the state of knowledge of global solar radiation to the point where it has applications in the estimation of monthly average daily global solar radiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Energy Engineering Science and Engineering Publishing Company

New Regression Model to Estimate Global Solar Radiation Using Artificial Neural Network

New Regression Model to Estimate Global Solar Radiation Using Artificial Neural Network

Advances in Energy Engineering , Volume 1 (3) – Jul 1, 2013

Abstract

The main objective of the present study was to develop a new model for the solar radiation estimation in hilly areas of North India for the determination of constants ‘a’ and ‘b’ by taking only latitude and altitude of the place into consideration. In this study, new model was developed based on Angstrom-Prescott Model to estimate the monthly average daily global solar radiation only using sunshine duration data. The monthly average global solar radiation data of four different locations in North India was analyzed with the neural fitting tool (nftool) of neural network of MATLAB Version 7.11.0.584 (R2010b) with 32-bit (win 32). The neural network model was used with 10 hidden neurons. Eight months data was used to train the neural network. Two months data was used for the validation purpose and the remaining two months for the testing purpose. The new developed model estimated the values of ‘a’ which range from 0.209 to 0.222 and values of ‘b’ ranging from 0.253 to 0.407. The values of maximum percentage error (MPE) and mean bias error (MBE) were in good agreement with the actual values. Artificial neural network application showed that data was best fitted for the regression coefficient of 0.99558 with best validation performance of 0.85906 for Solan. This will help to advance the state of knowledge of global solar radiation to the point where it has applications in the estimation of monthly average daily global solar radiation.

Loading next page...
 
/lp/science-and-engineering-publishing-company/new-regression-model-to-estimate-global-solar-radiation-using-ttNJVithSb

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Science and Engineering Publishing Company
Copyright
Science and Engineering Publishing Company
ISSN
2327-7327
eISSN
2327-7572

Abstract

The main objective of the present study was to develop a new model for the solar radiation estimation in hilly areas of North India for the determination of constants ‘a’ and ‘b’ by taking only latitude and altitude of the place into consideration. In this study, new model was developed based on Angstrom-Prescott Model to estimate the monthly average daily global solar radiation only using sunshine duration data. The monthly average global solar radiation data of four different locations in North India was analyzed with the neural fitting tool (nftool) of neural network of MATLAB Version 7.11.0.584 (R2010b) with 32-bit (win 32). The neural network model was used with 10 hidden neurons. Eight months data was used to train the neural network. Two months data was used for the validation purpose and the remaining two months for the testing purpose. The new developed model estimated the values of ‘a’ which range from 0.209 to 0.222 and values of ‘b’ ranging from 0.253 to 0.407. The values of maximum percentage error (MPE) and mean bias error (MBE) were in good agreement with the actual values. Artificial neural network application showed that data was best fitted for the regression coefficient of 0.99558 with best validation performance of 0.85906 for Solan. This will help to advance the state of knowledge of global solar radiation to the point where it has applications in the estimation of monthly average daily global solar radiation.

Journal

Advances in Energy EngineeringScience and Engineering Publishing Company

Published: Jul 1, 2013

Keywords: Artificial Neural Network; Global Solar Radiation; Extraterrestrial Radiation; Solar Constant; Sunshine Hour

There are no references for this article.