Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Wind tunnel tests on the characteristics of wind fields over a simplified gorge

Wind tunnel tests on the characteristics of wind fields over a simplified gorge Characteristics of wind fields over the gorge or valley terrains are becoming more and more important to the structural wind engineering. However, the studies on this topic are very limited. To obtain the fundamental characteristics information about the wind fields over a typical gorge terrain, a V-shaped simplified gorge, which was abstracted from some real deep-cutting gorges where long-span bridges usually straddle, was introduced in the present wind tunnel studies. Then, the wind characteristics including the mean wind speed, turbulence intensity, integral length scale, and the wind power spectrum over the simplified gorge were studied in a simulated atmospheric boundary layer. Furthermore, the effects of the oncoming wind field type and oncoming wind direction on these wind characteristics were also investigated. The results show that compared with the oncoming wind, the wind speeds at the gorge center become larger, but the turbulence intensities and the longitudinal integral length scales become smaller. Generally, the wind fields over the gorge terrain can be approximately divided into two layers, that is, the gorge inner layer and the gorge outer layer. The different oncoming wind field types have remarkable effects on the mean wind speed ratios near the ground. When the angle between the oncoming wind and the axis of the gorge is in a certain small range, such as smaller than 10°, the wind fields are very close to those associated with the wind direction of 0°. However, when the angle is in a larger range, such as larger than 20°, the wind fields in the gorge will significantly change. The research conclusions can provide some references for civil engineering practices regarding the characteristics of wind fields over the real gorge terrains. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Wind tunnel tests on the characteristics of wind fields over a simplified gorge

Loading next page...
 
/lp/sage/wind-tunnel-tests-on-the-characteristics-of-wind-fields-over-a-zjHtDnMSFY

References (29)

Publisher
SAGE
Copyright
© The Author(s) 2016
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/1369433216680635
Publisher site
See Article on Publisher Site

Abstract

Characteristics of wind fields over the gorge or valley terrains are becoming more and more important to the structural wind engineering. However, the studies on this topic are very limited. To obtain the fundamental characteristics information about the wind fields over a typical gorge terrain, a V-shaped simplified gorge, which was abstracted from some real deep-cutting gorges where long-span bridges usually straddle, was introduced in the present wind tunnel studies. Then, the wind characteristics including the mean wind speed, turbulence intensity, integral length scale, and the wind power spectrum over the simplified gorge were studied in a simulated atmospheric boundary layer. Furthermore, the effects of the oncoming wind field type and oncoming wind direction on these wind characteristics were also investigated. The results show that compared with the oncoming wind, the wind speeds at the gorge center become larger, but the turbulence intensities and the longitudinal integral length scales become smaller. Generally, the wind fields over the gorge terrain can be approximately divided into two layers, that is, the gorge inner layer and the gorge outer layer. The different oncoming wind field types have remarkable effects on the mean wind speed ratios near the ground. When the angle between the oncoming wind and the axis of the gorge is in a certain small range, such as smaller than 10°, the wind fields are very close to those associated with the wind direction of 0°. However, when the angle is in a larger range, such as larger than 20°, the wind fields in the gorge will significantly change. The research conclusions can provide some references for civil engineering practices regarding the characteristics of wind fields over the real gorge terrains.

Journal

Advances in Structural EngineeringSAGE

Published: Oct 1, 2017

There are no references for this article.