Access the full text.
Sign up today, get DeepDyve free for 14 days.
Simultaneous control of wind turbine blades and tower vibrations is studied in this article. Four active tuned mass dampers have been incorporated into each blade and tower to reduce vibrations. A decentralized constrained H∞ velocity output feedback which restricts the tuned mass damper stroke as a hard constraint is proposed by solving linear matrix inequality. Each active tuned mass damper is driven individually by the output of the corresponding velocity signal. Considering the structural dynamics subjected to gravity, variable rotor speed, and aerodynamic loadings, a model describing dynamics of rotating blades coupled with tower, including the dynamics of active tuned mass dampers, was developed by Euler–Lagrangian formulation. A numerical simulation is carried out to verify the effectiveness of the proposed decentralized control scheme. Investigations show promising results for the active tuned mass damper in simultaneous control blade vibrations and tower vibrations by decentralized control approach. Numerical results demonstrate that the decentralized control has the similar performance compared to centralized control and effectively reduce the displacement of vibrations.
Advances in Structural Engineering – SAGE
Published: May 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.