Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper presents an analytical solution for the evolution and distribution of shear stresses along the entire bond length of FRP-concrete interfaces due to mode-II fatigue loading. The creep-fatigue interaction and fatigue crack growth after debonding initiation are incorporated into a nonlinear interfacial constitutive law. While the creep-fatigue interaction is represented by the degradation of the interfacial stiffness, the debond growth is governed by a form of the Paris equation and the fracture energy ratio, Gmax/Gc. Furthermore, a new form of energy ratio is adopted to be debond-dependent. Through a series of experimental double-lap shear specimens, the results showed that the debond growth rate (da/dN) along the FRP-concrete interfaces diminishes with fatigue cycles and that 30% of the static bond capacity of the FRP-concrete interface can be considered as the endurance limit of fatigue loading for FRP-strengthened beams. The agreement between the theoretical predictions and experimental results is valid, with a good degree of accuracy.
Advances in Structural Engineering – SAGE
Published: Dec 1, 2009
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.