Access the full text.
Sign up today, get DeepDyve free for 14 days.
A long-span stadium roof has always been a wind load sensitive system, given its usual complex curved surface. However, there is no definite method for calculating the wind load shape factor of the complex building in the code. Based on this, the standard k−ε model was applied to the computational fluid dynamics numerical simulation of a long-span stadium roof at the wind attack angles of 0°–180°. The pressure distribution on the top and bottom surfaces of the stadium roof and the wind load shape factor were obtained by numerical simulation. The results show that the negative pressure was dominant on the top surface of the roof and the positive pressure was dominant on the bottom surface of the stadium at the wind attack angle of 0°. The ring-shaped curtain wall made the wind field environment more complicated, mainly under the wind attack angles of 45° and 180°. Because of the dip angles at both ends of the roof, the wind pressure distribution at both ends of the roof was opposite to the main region. The maximum wind load shape factors of each region were negative. In addition, the maximum wind load shape factor was at 45°, which was −1.1. The maximum wind load shape factors in regions of R13–R19 were larger, which should be paid attention in design stage. In general, the wind load shape factors were large in the central region and small at both ends. The wind load shape factors of the roof were bounded by 90°, showing an anti-symmetric trend.
Advances in Structural Engineering – SAGE
Published: Aug 1, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.