Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Structural form and experimental research of truss arch bridge with multi-point elastic constraints

Structural form and experimental research of truss arch bridge with multi-point elastic constraints With the increase of the arch bridge span, the mechanical properties of arch bridges will decrease rapidly. In order to solve this problem, triangular net is set between the arch rib and girder to form a kind of truss arch bridge in which arch rib acts as top chord, girder acts as lower chord, triangular net acts as web member, and hangers provide elastic restrains at several points. The triangle stability of the truss can improve linear stiffness of arch rib and girder, which will thus improve the mechanical properties of arch bridges. A test bridge with a span of 50 m was built to prove the superiority of the truss arch bridge with multi-point elastic constraints (MTAB). Structural stresses and displacements were obtained through dead load experiments, and the mechanical properties of the structure were calculated through the finite element (FE) software. It is turned out that, compared with the conventional through arch bridge (CTAB), the mechanical performance of the MTAB is greatly improved. The test values of structural stresses and displacements match calculation values well. Moreover, with the same steel consumption, the more layers of the triangular net, the better the mechanical properties of the structure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Structural Engineering SAGE

Structural form and experimental research of truss arch bridge with multi-point elastic constraints

Loading next page...
 
/lp/sage/structural-form-and-experimental-research-of-truss-arch-bridge-with-cMAg4QNrH7
Publisher
SAGE
Copyright
© The Author(s) 2021
ISSN
1369-4332
eISSN
2048-4011
DOI
10.1177/13694332211020384
Publisher site
See Article on Publisher Site

Abstract

With the increase of the arch bridge span, the mechanical properties of arch bridges will decrease rapidly. In order to solve this problem, triangular net is set between the arch rib and girder to form a kind of truss arch bridge in which arch rib acts as top chord, girder acts as lower chord, triangular net acts as web member, and hangers provide elastic restrains at several points. The triangle stability of the truss can improve linear stiffness of arch rib and girder, which will thus improve the mechanical properties of arch bridges. A test bridge with a span of 50 m was built to prove the superiority of the truss arch bridge with multi-point elastic constraints (MTAB). Structural stresses and displacements were obtained through dead load experiments, and the mechanical properties of the structure were calculated through the finite element (FE) software. It is turned out that, compared with the conventional through arch bridge (CTAB), the mechanical performance of the MTAB is greatly improved. The test values of structural stresses and displacements match calculation values well. Moreover, with the same steel consumption, the more layers of the triangular net, the better the mechanical properties of the structure.

Journal

Advances in Structural EngineeringSAGE

Published: Oct 1, 2021

There are no references for this article.