Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Stroke: The past, present and future:

Stroke: The past, present and future: Since the inception of the British Neuroscience Association, there have been major advances in our knowledge of the mechanistic basis for stroke-induced brain damage. Identification of the ischaemic cascade led to the development of hundreds of new drugs, many showing efficacy in preclinical (animal-based) studies. None of these drugs has yet translated to a successful stroke treatment, current therapy being limited to thrombolysis/thrombectomy. However, this translational failure has led to significant improvements in the quality of animal-based stroke research, with the refinement of rodent models, introduction of new technologies (e.g. transgenics, in vivo brain imaging) and improvements in study design (e.g. STAIR, ARRIVE and IMPROVE guidelines). This has run in parallel with advances in clinical diagnostic imaging for detection of ischaemic versus haemorrhagic stroke, differentiating penumbra from ischaemic core, and improved clinical trial design. These preclinical and clinical advances represent the foundation for successful translation from the bench to the bedside in the near future. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain and Neuroscience Advances SAGE

Stroke: The past, present and future:

Stroke: The past, present and future:

Brain and Neuroscience Advances , Volume 2: 1 – Nov 12, 2018

Abstract

Since the inception of the British Neuroscience Association, there have been major advances in our knowledge of the mechanistic basis for stroke-induced brain damage. Identification of the ischaemic cascade led to the development of hundreds of new drugs, many showing efficacy in preclinical (animal-based) studies. None of these drugs has yet translated to a successful stroke treatment, current therapy being limited to thrombolysis/thrombectomy. However, this translational failure has led to significant improvements in the quality of animal-based stroke research, with the refinement of rodent models, introduction of new technologies (e.g. transgenics, in vivo brain imaging) and improvements in study design (e.g. STAIR, ARRIVE and IMPROVE guidelines). This has run in parallel with advances in clinical diagnostic imaging for detection of ischaemic versus haemorrhagic stroke, differentiating penumbra from ischaemic core, and improved clinical trial design. These preclinical and clinical advances represent the foundation for successful translation from the bench to the bedside in the near future.

Loading next page...
 
/lp/sage/stroke-the-past-present-and-future-lpX8yZ14gY

References (96)

Publisher
SAGE
Copyright
Copyright © 2022 by SAGE Publications Ltd and British Neuroscience Association, unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
ISSN
2398-2128
eISSN
2398-2128
DOI
10.1177/2398212818810689
Publisher site
See Article on Publisher Site

Abstract

Since the inception of the British Neuroscience Association, there have been major advances in our knowledge of the mechanistic basis for stroke-induced brain damage. Identification of the ischaemic cascade led to the development of hundreds of new drugs, many showing efficacy in preclinical (animal-based) studies. None of these drugs has yet translated to a successful stroke treatment, current therapy being limited to thrombolysis/thrombectomy. However, this translational failure has led to significant improvements in the quality of animal-based stroke research, with the refinement of rodent models, introduction of new technologies (e.g. transgenics, in vivo brain imaging) and improvements in study design (e.g. STAIR, ARRIVE and IMPROVE guidelines). This has run in parallel with advances in clinical diagnostic imaging for detection of ischaemic versus haemorrhagic stroke, differentiating penumbra from ischaemic core, and improved clinical trial design. These preclinical and clinical advances represent the foundation for successful translation from the bench to the bedside in the near future.

Journal

Brain and Neuroscience AdvancesSAGE

Published: Nov 12, 2018

Keywords: Stroke; cerebral ischaemia; preclinical; brain injury

There are no references for this article.